Administrivia

- Reminder: Midterm next Tuesday. Review sheet on the Web.
- Reminder: Quiz 3 Thursday.
- Reminder: Homework 3 due today. Homework 4 officially due next week, but if you turn it in early you can pick up a sample solution before the exam.

Slide 1

Recursion and Recursive Definitions - Review/Recap

- Idea of recursion closely related to idea of induction - "build on previous smaller cases".
- First look at recursive definitions. To define something recursively:
- Define one or more "base cases".

Slide 2

- Define remaining cases in terms of other ("smaller") cases.
- Last time we looked at recursive definitions of sequences (define first (few) elements(s), others in terms of previous elements), sets (define base element(s), rules for generating other elements).

Recursive Definitions - Sets (Review)

- Example last time - integer arithmetic expressions. defined in terms of addition.
- More examples - strings, palindromes (from textbook).

Slide 3

Recursive Definitions - Operations (Review)

- Examples last time - factorial, multiplication of non-negative integers, defined in terms of addition.
- Example - (integer) division of a non-negative integer by a positive integer, defined in terms of subtraction.

Slide 4

Recursive Algorithms

- Recursive definitions of sequences or operations often can be turned into recursive algorithms with little effort.
- Simple classic example - function to compute n factorial.
- Efficiency considerations:

Slide 5

- In terms of computer time/memory usage, recursion is almost always worse than iteration - but not always, and sometimes not much worse.
- In terms of human effort to get program running correctly, recursion may be much better.
- Examples in text - selection sort and binary search. Quicksort and mergesort are other good ones.

Recursive Algorithms - Examples

- Examples in text - selection sort and binary search. Quicksort and mergesort are other good ones.
- Other good examples involve "trees" - not discussed yet, but a hierarchical file system (with folders and files) is an example, and we could sketch an algorithm to search one.

Reasoning About Recursive Algorithms

- A recursive algorithm "works" if:
- It works for the base case(s).
- For other cases, it works assuming the recursive calls work.
- The recursion eventually stops - recursive calls are always "smaller", and eventually reduce to base cases.
- We could formalize this as a proof by induction.

Minute Essay

- Consider the following recursive definition of a sequence:

$$
\begin{aligned}
& S(1)=1 \\
& S(n)=10 S(n-1)+1, \text { for } n>1
\end{aligned}
$$

Slide $8 \quad$ What are $S(1), S(2), \ldots S(5)$?

- We could use part or all of Thursday's class to review for the midterm. Would you be interested in doing this, and if so are there particular topics?

