Administrivia

- (None.)

Slide 1

Recurrence Relations

- Recall the silly example of defining a sequence recursively:

$$
\begin{aligned}
& S(1)=1 \\
& S(n)=S(n-1) \times 10, \text { for } n>1
\end{aligned}
$$

Slide 2
Expanding out some terms, it seems fairly obvious that an equivalent definition would be $S(n)=10^{n-1}$ - a "closed-form solution" to the recurrence relation given in the second line of the definition.

- We'll look at various ways to get from a recursive definition to a closed-form one, because the latter are easier to compute, but sometimes it will be much easier to write down the definition recursively.

Solving Recurrence Relations, Continued

- For the silly example

$$
\begin{aligned}
& S(1)=1 \\
& S(n)=S(n-1) \times 10, \text { for } n>1
\end{aligned}
$$

Slide 3

we guessed a solution of $S(n)=10^{n-1}$. Can we verify that this is the same as the recursive definition? yes, via a proof by induction ...

- Call this method "expand, guess, verify".
- Try another example - section 2.5 problem 3.

Solving Recurrence Relations, Continued

- Is there another way? In general, probably not, but there are some formulas for some frequently-occurring special cases.
- One is "first-order linear" recurrence relations with constant coefficients. If

$$
S(n)=c S(n-1)+g(n)
$$

then we can show (see textbook for derivation) that

$$
S(n)=c^{n-1} S(1)+\sum_{i=2}^{n}\left(c^{n-i} g(i)\right)
$$

- Apply this to the two problems we did earlier - we should get the same results.

Another Special Case

- Another case for which there's a formula - two base cases, and the recursive part of the definition depends on the previous two elements ("second-order") in a simple way:

$$
S(n)=c_{1} S(n-1)+c_{2} S(n-2)
$$

Slide 5

- For problems that fit this case, solution is more complicated (the "guess" part of getting it seems to involve a rabbit and a hat, though verifying it is relatively straightforward).

Another Special Case - Solution

- First find roots r_{1} and r_{2} of

$$
t^{2}-c_{1} t-c_{2}=0
$$

- and then (if $r_{1} \neq r_{2}$) find p and q to solve

Slide 6

$$
\begin{gathered}
p+q=S(1) \\
p r_{1}+q r_{2}=S(2)
\end{gathered}
$$

- and then the formula is

$$
S(n)=p r_{1}^{n-1}+q r_{2}^{n-1}
$$

- Example: Fibonacci sequence (problems 24 in 2.4, 31 in 2.5).

