CSCI 1323 March 28, 2013

Administrivia

e Homework 5 on the Web; due next Thursday.

Slide 1

Recurrence Relations — Review/Recap

e Previously we talked about defining sequences recursively, via base case(s)
and recursive case. Can also call this a recurrence relation (recursive part)

plus a basis step or initial conditions (base case(s)).

e “Solving” one of these amounts to finding an equivalent non-recursive

Slide 2 (“closed-form™) definition.
e One way to solve is to guess a solution and then prove it works by induction.

e Another way is to use one of the formulas from this chapter — if the relation
has the right form. Last time we talked about two of these special cases.

(Finish Fibonacci example?) One more ...

CSCI 1323 March 28, 2013

Yet Another Special Case

® One more case for which there’s a formula is one of interest in analysis of
algorithms, especially those that take a “divide and conquer” approach (e.g.,
quicksort, mergesort, binary search). In math terms, the recursive part is

S(n) =eS(n/2)+g(n), forn=2"n>1

Slide 3
e For problems that fit this case, the “expand, guess, verify” method produces

the following:

n

S(n) =Brs(1)+ Y (" ig(2")

i=logn

o Example: practice #25 in textbook.

4)

Analysis of Algorithms, Overview

e Often there’s more than one way to solve a given problem, i.e., more than one
algorithm. Which one is “best”? Depends on what “best” means. If we mean

“fastest™

o A useful measure of approximate execution time is worst-case (or sometimes
Slide 4 average-case) execution time expressed as a function of “problem size” (e.g.,

for operations on array, size of array) — “time complexity” of algorithm.
(Another measure is “space complexity”.)

e Customary to skip over housekeeping operations and count only “important
stuff” — arithmetic operations, comparisons, etc.

Also customary to “round off” the estimate to an “order of magnitude” — for a
problem of size N, we say an algorithm is O(f (IV')) if execution time is

somehow comparable to (V).

. J

CSCI 1323 March 28, 2013

Analysis of Algorithms, Examples

e Example — computing a sum of N numbers. How many additions?

e Example — sequential search of array of size /N. How many comparisons

(worst case)?

e Example — binary search of sorted array of size /N. How many comparisons

Slide 5 (worst case)?
Analysis of Algorithms, Longer Example
e ook at several algorithms for computing ab forba positive integer. First
version:
doubl e exp(double a, int b) {
double temp = a;
for (int i =1; i <b; i+=1)
Slide 6 tenp *= a

return tenp;

}

e How many multiplications needed?

CSCI 1323 March 28, 2013

Analysis of Algorithms, Longer Example Continued

e \We could also express this recursively:

doubl e exp(double a, int b) {

if (b ==1)
return a;
el se
Slide 7 return a * exp(a, b-1);
}
Does this work? (Yes. Why?)
e How to figure out how many multiplications? Define and solve a recurrence
relation.
Analysis of Algorithms, Longer Example Continued
e \We could also express this recursively another way:
doubl e exp(double a, int b) {
if (b ==1)
return a;
el se {
Slide 8 doubl e tenp = exp(a, b/2);
if (b %2 ==0) return tenp * tenp;
el se return tenp * tenmp * a;
}
}
Does this work? (Yes. Why?)
e How to figure out how many multiplications? Define and solve a recurrence
relation. (For now do this only for b a power of 2.)

. J

CSCI 1323

Slide 9

Slide 10

March 28, 2013

_

Analysis of Algorithms, Continued

o More complicated (but faster) ab algorithm — example of “divide and
conquer” algorithms. General form:
i f (base case)
sol ve
el se {
split into subproblens
sol ve subprobl em(s)
mer ge subsol utions

}

e In general, recurrence relation for work involved has the form
S(n) =cS(n/2)+g(n), forn=2"n>1

for which we have a formula, right?

Analysis of Algorithms, Continued

e Example — recurrence relation for exponentiation algorithm:

M@1) = 0
M(n) = 14+ M(n/2),forn=2"n>1

CSCI 1323 March 28, 2013

Analysis of Algorithms and “Big-Oh” Notation

e Often useful to further approximate time for algorithm using “order of

magpnitude” of function — e.g., O(n), O(n?).

o We will talk about this more later (chapter on functions), but for now — idea is
that all O(g(n)) algorithms are bounded above, for large 1, by a multiple of

Slide 11 g(n), so they all have similar behavior as n increases.

e How many comparisons are needed to sort an array of /N elements using
bubble sort?:
for (int i =0; i < N1; i+=1) {
for (int j =0; j < N1-i; j+=1) {
if (a[j+1] < a[j])
swap(alj+1], a[j]);

Slide 12

CSCI 1323 March 28, 2013

e NN1+N-2+N-3+...+0,ie, (N-1)*N 2. (One comparison per trip
through the inner loop, and the number of inner-loop trips for each trip

through the outer loop depends on the value of i .)

Slide 13

