CSCI 1323 March 28, 2013

Administrivia

e Homework 5 on the Web; due next Thursday.
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Recurrence Relations — Review/Recap

e Previously we talked about defining sequences recursively, via base case(s)
and recursive case. Can also call this a recurrence relation (recursive part)

plus a basis step or initial conditions (base case(s)).

e “Solving” one of these amounts to finding an equivalent non-recursive

Slide 2 (“closed-form™) definition.
e One way to solve is to guess a solution and then prove it works by induction.

e Another way is to use one of the formulas from this chapter — if the relation
has the right form. Last time we talked about two of these special cases.

(Finish Fibonacci example?) One more ...
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Yet Another Special Case

® One more case for which there’s a formula is one of interest in analysis of
algorithms, especially those that take a “divide and conquer” approach (e.g.,
quicksort, mergesort, binary search). In math terms, the recursive part is

S(n) =eS(n/2)+g(n), forn=2"n>1
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e For problems that fit this case, the “expand, guess, verify” method produces

the following:

n

S(n) =Brs(1)+ Y (" ig(2")

i=logn

o Example: practice #25 in textbook.

4 )

Analysis of Algorithms, Overview

e Often there’s more than one way to solve a given problem, i.e., more than one
algorithm. Which one is “best”? Depends on what “best” means. If we mean

“fastest™

o A useful measure of approximate execution time is worst-case (or sometimes
Slide 4 average-case) execution time expressed as a function of “problem size” (e.g.,

for operations on array, size of array) — “time complexity” of algorithm.
(Another measure is “space complexity”.)

e Customary to skip over housekeeping operations and count only “important
stuff” — arithmetic operations, comparisons, etc.

Also customary to “round off” the estimate to an “order of magnitude” — for a
problem of size N, we say an algorithm is O(f (IV')) if execution time is

somehow comparable to (V).

. J
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Analysis of Algorithms, Examples

e Example — computing a sum of N numbers. How many additions?

e Example — sequential search of array of size /N. How many comparisons

(worst case)?

e Example — binary search of sorted array of size /N. How many comparisons

Slide 5 (worst case)?
Analysis of Algorithms, Longer Example
e ook at several algorithms for computing ab forba positive integer. First
version:
doubl e exp(double a, int b) {
double temp = a;
for (int i =1; i <b; i+=1)
Slide 6 tenp *= a

return tenp;

}

e How many multiplications needed?
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Analysis of Algorithms, Longer Example Continued

e \We could also express this recursively:

doubl e exp(double a, int b) {

if (b ==1)
return a;
el se
Slide 7 return a * exp(a, b-1);
}
Does this work? (Yes. Why?)
e How to figure out how many multiplications? Define and solve a recurrence
relation.
Analysis of Algorithms, Longer Example Continued
e \We could also express this recursively another way:
doubl e exp(double a, int b) {
if (b ==1)
return a;
el se {
Slide 8 doubl e tenp = exp(a, b/2);
if (b %2 ==0) return tenp * tenp;
el se return tenp * tenmp * a;
}
}
Does this work? (Yes. Why?)
e How to figure out how many multiplications? Define and solve a recurrence
relation. (For now do this only for b a power of 2.)

. J
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Analysis of Algorithms, Continued

o More complicated (but faster) ab algorithm — example of “divide and
conquer” algorithms. General form:
i f (base case)
sol ve
el se {
split into subproblens
sol ve subprobl em(s)
mer ge subsol utions

}

e In general, recurrence relation for work involved has the form
S(n) =cS(n/2)+g(n), forn=2"n>1

for which we have a formula, right?

Analysis of Algorithms, Continued

e Example — recurrence relation for exponentiation algorithm:

M@1) = 0
M(n) = 14+ M(n/2),forn=2"n>1
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Analysis of Algorithms and “Big-Oh” Notation

e Often useful to further approximate time for algorithm using “order of

magpnitude” of function — e.g., O(n), O(n?).

o We will talk about this more later (chapter on functions), but for now — idea is
that all O(g(n)) algorithms are bounded above, for large 1, by a multiple of

Slide 11 g(n), so they all have similar behavior as n increases.

e How many comparisons are needed to sort an array of /N elements using
bubble sort?:
for (int i =0; i < N1; i+=1) {
for (int j =0; j < N1-i; j+=1) {
if (a[j+1] < a[j])
swap(alj+1], a[j]);
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e NN1+N-2+N-3+...+0,ie, (N-1)*N 2. (One comparison per trip
through the inner loop, and the number of inner-loop trips for each trip

through the outer loop depends on the value of i .)
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