Administrivia

- Homework 5 on the Web; due next Thursday.

Slide 1

Recurrence Relations - Review/Recap

- Previously we talked about defining sequences recursively, via base case(s) and recursive case. Can also call this a recurrence relation (recursive part) plus a basis step or initial conditions (base case(s)).
- "Solving" one of these amounts to finding an equivalent non-recursive

Slide 2 ("closed-form") definition.

- One way to solve is to guess a solution and then prove it works by induction.
- Another way is to use one of the formulas from this chapter - if the relation has the right form. Last time we talked about two of these special cases. (Finish Fibonacci example?) One more ...

Yet Another Special Case

- One more case for which there's a formula is one of interest in analysis of algorithms, especially those that take a "divide and conquer" approach (e.g., quicksort, mergesort, binary search). In math terms, the recursive part is

$$
S(n)=c S(n / 2)+g(n), \text { for } n=2^{m}, n>1
$$

Slide 3

- For problems that fit this case, the "expand, guess, verify" method produces the following:

$$
S(n)=c^{\log n} S(1)+\sum_{i=\log n}^{n}\left(c^{\log n-i} g\left(2^{i}\right)\right)
$$

- Example: practice \#25 in textbook.

Analysis of Algorithms, Overview

- Often there's more than one way to solve a given problem, i.e., more than one algorithm. Which one is "best"? Depends on what "best" means. If we mean "fastest":
- A useful measure of approximate execution time is worst-case (or sometimes

Slide $4 \quad$ average-case) execution time expressed as a function of "problem size" (e.g., for operations on array, size of array) - "time complexity" of algorithm.
(Another measure is "space complexity".)

- Customary to skip over housekeeping operations and count only "important stuff" - arithmetic operations, comparisons, etc.
Also customary to "round off" the estimate to an "order of magnitude" - for a problem of size N, we say an algorithm is $O(f(N))$ if execution time is somehow comparable to $f(N)$.

Analysis of Algorithms, Examples

- Example - computing a sum of N numbers. How many additions?
- Example - sequential search of array of size N. How many comparisons (worst case)?
- Example - binary search of sorted array of size N. How many comparisons

Slide 5

 (worst case)?
Analysis of Algorithms, Longer Example

- Look at several algorithms for computing a^{b}, for b a positive integer. First version:

```
double exp(double a, int b) {
    double temp = a;
    for (int i = 1; i < b; i+=1)
        temp *= a;
        return temp;
    }
```

- How many multiplications needed?

Analysis of Algorithms, Longer Example Continued

- We could also express this recursively:

```
double exp(double a, int b) {
    if (b == 1)
        return a;
    else
        return a * exp(a, b-1);
}
```

Does this work? (Yes. Why?)

- How to figure out how many multiplications? Define and solve a recurrence relation.

Analysis of Algorithms, Longer Example Continued

- We could also express this recursively another way:

```
double exp(double a, int b) {
    if (b == 1)
        return a;
    else {
        double temp = exp (a, b/2);
        if (b % 2 == 0) return temp * temp;
        else return temp * temp * a;
    }
}
Does this work? (Yes. Why?)
```

- How to figure out how many multiplications? Define and solve a recurrence relation. (For now do this only for b a power of 2.)

Analysis of Algorithms, Continued

- More complicated (but faster) a^{b} algorithm - example of "divide and conquer" algorithms. General form:
if (base case)
solve
else \{
split into subproblems
solve subproblem(s)
merge subsolutions
\}
- In general, recurrence relation for work involved has the form

$$
S(n)=c S(n / 2)+g(n), \text { for } n=2^{m}, n>1
$$

for which we have a formula, right?

Analysis of Algorithms, Continued

- Example - recurrence relation for exponentiation algorithm:

$$
\begin{aligned}
& M(1)=0 \\
& M(n)=1+M(n / 2), \text { for } n=2^{m}, n>1
\end{aligned}
$$

Analysis of Algorithms and "Big-Oh" Notation

- Often useful to further approximate time for algorithm using "order of magnitude" of function - e.g., $O(n), O\left(n^{2}\right)$.
- We will talk about this more later (chapter on functions), but for now - idea is that all $O(g(n))$ algorithms are bounded above, for large n, by a multiple of $g(n)$, so they all have similar behavior as n increases.

Minute Essay

- How many comparisons are needed to sort an array of N elements using bubble sort?:

```
for (int i = 0; i < N-1; i+=1) {
    for (int j = 0; j < N-1-i; j+=1) {
        if (a[j+1] < a[j])
            swap(a[j+1], a[j]);
    }
}
```


Minute Essay Answer

- $\mathrm{N}-1+\mathrm{N}-2+\mathrm{N}-3+\ldots+0$, i.e., $(\mathrm{N}-1) * \mathrm{~N} / 2$. (One comparison per trip through the inner loop, and the number of inner-loop trips for each trip through the outer loop depends on the value of i.)

Slide 13

