
CSCI 1323 March 28, 2013

Slide 1

Administrivia

• Homework 5 on the Web; due next Thursday.

Slide 2

Recurrence Relations — Review/Recap

• Previously we talked about defining sequences recursively, via base case(s)

and recursive case. Can also call this a recurrence relation (recursive part)

plus a basis step or initial conditions (base case(s)).

• “Solving” one of these amounts to finding an equivalent non-recursive

(“closed-form”) definition.

• One way to solve is to guess a solution and then prove it works by induction.

• Another way is to use one of the formulas from this chapter — if the relation

has the right form. Last time we talked about two of these special cases.

(Finish Fibonacci example?) One more . . .



CSCI 1323 March 28, 2013

Slide 3

Yet Another Special Case

• One more case for which there’s a formula is one of interest in analysis of

algorithms, especially those that take a “divide and conquer” approach (e.g.,

quicksort, mergesort, binary search). In math terms, the recursive part is

S(n) = cS(n/2) + g(n), for n = 2m, n > 1

• For problems that fit this case, the “expand, guess, verify” method produces

the following:

S(n) = clog nS(1) +

n∑

i=log n

(clog n−ig(2i))

• Example: practice #25 in textbook.

Slide 4

Analysis of Algorithms, Overview

• Often there’s more than one way to solve a given problem, i.e., more than one

algorithm. Which one is “best”? Depends on what “best” means. If we mean

“fastest”:

• A useful measure of approximate execution time is worst-case (or sometimes

average-case) execution time expressed as a function of “problem size” (e.g.,

for operations on array, size of array) — “time complexity” of algorithm.

(Another measure is “space complexity”.)

• Customary to skip over housekeeping operations and count only “important

stuff” — arithmetic operations, comparisons, etc.

Also customary to “round off” the estimate to an “order of magnitude” — for a

problem of size N , we say an algorithm is O(f(N)) if execution time is

somehow comparable to f(N).



CSCI 1323 March 28, 2013

Slide 5

Analysis of Algorithms, Examples

• Example — computing a sum of N numbers. How many additions?

• Example — sequential search of array of size N . How many comparisons

(worst case)?

• Example — binary search of sorted array of size N . How many comparisons

(worst case)?

Slide 6

Analysis of Algorithms, Longer Example

• Look at several algorithms for computing ab, for b a positive integer. First

version:

double exp(double a, int b) {

double temp = a;

for (int i = 1; i < b; i+=1)

temp *= a;

return temp;

}

• How many multiplications needed?



CSCI 1323 March 28, 2013

Slide 7

Analysis of Algorithms, Longer Example Continued

• We could also express this recursively:

double exp(double a, int b) {

if (b == 1)

return a;

else

return a * exp(a, b-1);

}

Does this work? (Yes. Why?)

• How to figure out how many multiplications? Define and solve a recurrence

relation.

Slide 8

Analysis of Algorithms, Longer Example Continued

• We could also express this recursively another way:

double exp(double a, int b) {

if (b == 1)

return a;

else {

double temp = exp(a, b/2);

if (b % 2 == 0) return temp * temp;

else return temp * temp * a;

}

}

Does this work? (Yes. Why?)

• How to figure out how many multiplications? Define and solve a recurrence

relation. (For now do this only for b a power of 2.)



CSCI 1323 March 28, 2013

Slide 9

Analysis of Algorithms, Continued

• More complicated (but faster) ab algorithm — example of “divide and

conquer” algorithms. General form:

if (base case)

solve

else {

split into subproblems

solve subproblem(s)

merge subsolutions

}

• In general, recurrence relation for work involved has the form

S(n) = cS(n/2) + g(n), for n = 2m, n > 1

for which we have a formula, right?

Slide 10

Analysis of Algorithms, Continued

• Example — recurrence relation for exponentiation algorithm:

M(1) = 0

M(n) = 1 + M(n/2), for n = 2m, n > 1



CSCI 1323 March 28, 2013

Slide 11

Analysis of Algorithms and “Big-Oh” Notation

• Often useful to further approximate time for algorithm using “order of

magnitude” of function — e.g., O(n), O(n2).

• We will talk about this more later (chapter on functions), but for now — idea is

that all O(g(n)) algorithms are bounded above, for large n, by a multiple of

g(n), so they all have similar behavior as n increases.

Slide 12

Minute Essay

• How many comparisons are needed to sort an array of N elements using

bubble sort?:

for (int i = 0; i < N-1; i+=1) {

for (int j = 0; j < N-1-i; j+=1) {

if (a[j+1] < a[j])

swap(a[j+1], a[j]);

}

}



CSCI 1323 March 28, 2013

Slide 13

Minute Essay Answer

• N-1 + N-2 + N-3 + . . . + 0, i.e., (N-1)*N/2. (One comparison per trip

through the inner loop, and the number of inner-loop trips for each trip

through the outer loop depends on the value of i.)


