Administrivia

- Reminder: Homework 5 due today. (Accepted without penalty through Friday at 5 pm .)

Slide 1

Sets

- (This will likely be review for most of you!)
- Definition: Informally, a set is a collection of objects (unordered, no duplicates). Formally - well, formal definitions are surprisingly difficult! (Skim the Wikipedia article "Russell's paradox" for a bit more information.)

Slide 2

- Some notation - for x an object and A a set,
$x \in A$ means - ?
$y \notin A$ means - ?
- We say two sets are equal exactly when they have the same members.

Ways to Specify Sets

- By listing elements, e.g., $S=\{a, b, 1,2\}$.
- Recursively, as in chapter 2.
- By describing a property P such that x is in S exactly when $P(x)$. E.g., $S=\{x \mid x$ is an even integer $\}$

Slide 3

- As one of
- $\}$ or \emptyset (empty set).
- \mathbb{N} (non-negative integers).
- \mathbb{Z} (integers).
- \mathbb{Q} (rationals).
- \mathbb{R} (reals).
- \mathbb{C} (complex numbers).

Subsets

- $A \subseteq B$ exactly when every element of A is also in B. "Proper" subset is when $A \neq B$.
For what sets S is the empty set a subset of S ?
- If $A \subseteq B$ and $B \subseteq A$, what do we know about A and B ?

Slide 4

Power Sets

- Sets are collections of objects, so no reason we can't have sets of sets, right?
- For set S, define $\mathscr{P}(S)$ ("power set of S ") to be the set of all subsets of S.
- If S is finite and has n elements, how many elements in $\mathscr{P}(S)$? (See textbook for nice inductive proof.)

Slide 5

Operations on Sets

- Union: $A \cup B=\{x \mid x \in A \vee x \in B\}$.
- Intersection: $A \cap B=\{x \mid x \in A \wedge x \in B\}$. What does " A and B are disjoint" mean?
- Complement: $A^{\prime}=\{x \mid x \in S \wedge x \notin A\}$, where S is some "universal set" (without which this definition doesn't make sense) - integers, people, etc.
- Difference: $A-B=\{x \mid x \in A \wedge x \notin B\}$.
- Cartesian product: $A \times B=\{(x, y) \mid x \in A \wedge y \in B\}$.

Properties of Set Operations

- These operations have many useful properties - commutativity, associativity, etc. - see p. 171 for a list.
- All of these properties can be proved from the definition ($A=B$ exactly when $A \subseteq B$ and $B \subseteq A$). Example - show $A \cup B=B \cup A$.

Slide 7

Countable and Uncountable Sets

- If A and B are finite sets, fairly obvious what it means for them to be "the same size", right?
- Is there some way to extend this to notion of "size" for infinite sets?

Slide 8

Countable and Uncountable Sets, Continued

- A bit informally, we can say that two sets are the same size ("have the same cardinality") if we can set up a one-to-one correspondence between them.
- For finite sets, matches our earlier/intuitive ideas, right? How about infinite sets?

Slide 9

- Positive integers versus negative integers?
- Even integers versus odd integers?
- Integers versus even integers?

Countable and Uncountable Sets, Continued

- Define " S countable" to mean there's some way to write down all elements of S "in order". (Might be more than one way - okay so long as there's at least one.)
- Are the following sets countable?

Slide 10

- Finite sets?
$-\mathbb{N}$?
$-\mathbb{Z}$?
$-\mathbb{Q}^{+}$?

Countable and Uncountable Sets, Continued

- So are all sets countable?? No. \mathbb{R} is not.

Proof is by contradiction. First we notice that we can set up a one-to-one correspondence between all real numbers and the real numbers greater than 0 and less than 1 . Then we assume we can "list" those numbers and show that there's one we missed.

- Is \mathbb{R} the "largest" set? No. We can also prove that S and $\mathscr{P}(S)$ are not "the same size", again by contradiction. ("Cantor's theorem")
- (Is any of this crucially important to an understanding of computer science? Probably not, but it's too entertaining to skip.)

Minute Essay

- Suppose you have
$A=\{2,4,6,8\}$
$B=\{1,4,9,16\}$
What are $A \cup B, A \cap B$, and $A-B$? How many elements are there in Slide $12 \quad \mathscr{P}(A)$?

