

Slide 1

Slide 6

	Principle of Inclusion/Exclusion
	 Motivating(?) example: You take a poll of how many people support propositions A and B. You find that 10 of them support A, 20 support B, and 5 support both A and B. How many support either A or B?
Slide 8	• Using set notation, with $ S $ meaning the number of elements in S : Given $ A =10,$ $ B =20,$ and $ A\cap B =5,$ what is $ A\cup B $?
	- We can use the addition principle to derive $ A\cup B = A + B - A\cap B $
	(Intuitive idea is that we count everything in both sets, and in doing that we count some things twice, so we must correct.)

Slide 13

