Administrivia

- Reminder: Homework 6 due Thursday. Two more homeworks.
- If you need to know your grade on the midterm ASAP — send me e-mail. I hope to finish grading them very soon.

Slide 1

Binary Relations

- Formal definition: A binary relation ρ on a set S is a subset of $S \times S$. Usually this set is defined by some property of interest. For $a, b \in S$, we write $a \rho b$ iff (if and only if) (a, b) is in this subset.
- Examples:

Slide $2 \quad-S$ is people in the world; $x \rho y$ iff x and y are siblings.

- S is integers; $x \rho y$ iff $x<y$.
- S is integers; $x \rho y$ iff y is a multiple of x.
- S is sets of integers; $x \rho y$ iff $x \subseteq y$.
- Notice that for a given relation ρ and element x, there can be any number (including zero) of y 's such that $x \rho y$ and any number (including zero) of y 's such that $y \rho x$.

Properties of (Some) Binary Relations

- ρ is reflexive if $x \rho x$ for all $x \in S$.
- ρ is symmetric if $(x \rho y) \rightarrow(y \rho x)$ for all $x, y \in S$.
- ρ is transitive if $(x \rho y) \wedge(y \rho z) \rightarrow(x \rho z)$ for all $x, y, z \in S$.

Slide $3 \quad \bullet \rho$ is antisymmetric if $(x \rho y) \wedge(y \rho x) \rightarrow(x=y)$ for all $x, y \in S$.

- Can combine these in interesting ways ...

Partial Ordering

- Idea: Generalize idea of "ordering" to include relations where not all pairs of elements can be ordered.
- Definition: ρ is a partial ordering if it's reflexive, antisymmetric, and transitive.
- Examples: \leq on integers or reals, \subseteq on sets.

Equivalence Relation

- Idea: Generalize idea of "equals" to include relations where pairs of elements are equivalent but not identical.
- Definition: ρ is an equivalence relation if it's reflexive, symmetric, and transitive.

Slide 5

- Examples: $=$ on integers or reals, $(x \bmod n)=(y \bmod n)$ for some n.
- Related terms/ideas:
- Equivalence classes.
- Partition of a set.

Uses of Partial Orderings

- One thing a partial ordering (reflexive, antisymmetric, transitive relation think "generalized \leq ") can express - ordering constraints among tasks.
- We'll look at one application - topological sorting. PERT charts discussed in textbook.

Slide 6

Topological Sorting

- Idea here is to take a partial ordering and find a way to extend it to a "total" ordering (i.e., add pairs so that for every x and y either $x \rho y$ or $y \rho x$. How is this useful? e.g., find a way to "schedule" interdependent tasks.
- Notice that there could be more than one way to do this for a given partial

Slide 7

 ordering.- How to do this? Next slide ...

Topological Sorting, Continued

- Algorithm for finding a way to extend a partial ordering - "topological sort":
- Start with set S and partial ordering ρ on S. Idea is to turn S into a sequence x_{1}, x_{2}, \ldots such that $\left(x_{i} \rho x_{j}\right) \rightarrow(i \leq j)$.
- The algorithm might look like this in pseudocode:

Slide 8
while (S not empty)
pick a minimal element x in S
make it the next element of the sequence and remove it from S
end while
("Minimal" here means an element such that aren't any that are smaller.)

- Does this work? i.e., does it produce an ordering that extends ρ ? True if we can be sure that for x and y with $x \rho y x$ is picked before y.

Functions

- Formal definition: $f: S \rightarrow T$ is a subset of $S \times T$, such that for every $s \in S$, there's exactly one (s, t) in the subset. Write $f(s)=t$.
- Terminology: S is f 's domain. T is f 's co-domain (or range).
- Examples:

Slide 9

- $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=x^{2}$.
$-g: \mathbb{N} \rightarrow \mathbb{R}$ defined by $g(x)=\sqrt{x}$.
- $h: P \rightarrow(P \times P)$ (where P is the set of people in the world) defined by $h(x)=(($ bio? $)$ mother of x, (bio?)father of $x)$.
- Idea easily extends to functions of more than one variable.

Properties of (Some) Functions

- For $f: S \rightarrow T, f$ is onto if for every $t \in T$ there's an $s \in S$ with $f(s)=t$. " f covers everything in T."
- For $f: S \rightarrow T, f$ is one-to-one if for every $s, s^{\prime} \in S$, $f(s)=f\left(s^{\prime}\right) \rightarrow s=s^{\prime}$. " f maps different things in S to different things in $T^{\prime \prime}$.
- If f is both one-to-one and onto, call it a bijection.

Composition of Functions

- For $f: S \rightarrow T$ and $g: T \rightarrow U$, can define $g \circ f: ? \rightarrow$?: $(g \circ f)(s)=g(f(s))$.

Slide 11

Function Inverses

- If f is a bijection, can define inverse of $f, f^{-1}: T \rightarrow S$ such that $f^{-1} \circ f=$ identity function on S
$f \circ f^{-1}=$ identity function on T
- Can we do this if f is not a bijection?

Set Cardinality, Revisited

- We can say that sets S and T have the same cardinality ("same size") if there is a bijection $f: S \rightarrow T$ - more formal/precise version of earlier definition, works for both finite and infinite sets.
- If we can define a one-to-one $f: S \rightarrow T$, then the cardinality of S is less than or equal to the cardinality of T.
- Recall that we had a "smallest" infinite set \mathbb{N}, and a strictly "larger" infinite set \mathbb{R}. Are there any bigger sets?

Yes. Recall that if S is finite with n elements, $\mathscr{P}(S)$ is strictly bigger (2^{n} elements). True for infinite sets as well - Cantor's theorem.

- Notice that this defines an equivalence relation on sets.

Minute Essay

- None - quiz.

