CSCI 1323 (Discrete Structures), Spring 2013 Derivation Rules for Propositional Logic

Equivalence rules

Expression	Equivalent to	Name/abbreviation
$P \vee Q$	$Q \vee P$	Commutative — comm
$P \wedge Q$	$Q \wedge P$	
$(P \lor Q) \lor R$	$P \vee (Q \vee R)$	Associative — ass
$(P \wedge Q) \wedge R$	$P \wedge (Q \wedge R)$	
$(P \vee Q)'$	$P' \wedge Q'$	De Morgan's Laws — De Morgan
$(P \wedge Q)'$	$P' \lor Q'$	
$P \rightarrow Q$	$P' \lor Q$	Implication — imp
P	(P')'	Double negation — dn

Inference rules

From	Can derive	Name/abbreviation
$P, P \rightarrow Q$	Q	Modus ponens — mp
$P \rightarrow Q, Q'$	P'	Modus tollens — mt
P, Q	$P \wedge Q$	Conjunction — con
$P \wedge Q$	P, Q	Simplification — sim
P	$P \vee Q$	Addition — add

Deduction method

To prove
$$(P_1 \wedge P_2 \wedge \ldots \wedge P_n) \to (R \to S)$$
 it is enough to prove that
$$(P_1 \wedge P_2 \wedge \ldots \wedge P_n \wedge R) \to S$$

More inference rules

From	Can derive	Name/abbreviation
$P \rightarrow Q, Q \rightarrow R$	$P \rightarrow R$	Hypothetical syllogism — hs [Example 16 in 1.2]
$P \vee Q, P'$	Q	Disjunctive syllogism — ds [Exercise 23 in 1.2]
$P \rightarrow Q$	$Q' \rightarrow P'$	Contraposition — cont [Exercise 24 in 1.2]
$Q' \rightarrow P'$	$P \rightarrow Q$	Contraposition — cont [Exercise 25 in 1.2]
P	$P \wedge P$	Self-reference — self [Exercise 26 in 1.2]
$P \vee P$	P	Self-reference — self [Exercise 27 in 1.2]
$(P \land Q) \rightarrow R$	$P \rightarrow (Q \rightarrow R)$	Exportation — exp [Exercise 30 in 1.2]
P, P'	Q	Inconsistency — inc [Exercise 31 in 1.2]
$P \wedge (Q \vee R)$	$(P \wedge Q) \vee (P \wedge R)$	Distributive — dist [Exercise 19 in 1.2]
$P \vee (Q \wedge R)$	$(P \lor Q) \land (P \lor R)$	Distributive — dist [Exercise 20 in 1.2]