

the leading secure software development firm

Basics of Application Security

Dan Cornell CTO, Denim Group @danielcornell

– the leading secure software development firm

My Background

DENIM **O** GROUP

- Dan Cornell, founder and CTO of Denim Group
- Software developer by background (Java, .NET, etc)
- OWASP San Antonio, Global Membership Committee

Denim Group Background

- Secure software services and products company
 - Builds secure software
 - Helps organizations assess and mitigate risk of in-house developed and third party software
 - Provides classroom training and e-Learning so clients can build software securely
- Software-centric view of application security
 - Application security experts are practicing developers
 - Development pedigree translates to rapport with development managers
 - Business impact: shorter time-to-fix application vulnerabilities
- Culture of application security innovation and contribution
 - Develops open source tools to help clients mature their software security programs
 - Remediation Resource Center, ThreadFix
 - OWASP national leaders & regular speakers at RSA, SANS, OWASP, ISSA, CSI
 - World class alliance partners accelerate innovation to solve client problems

Application Security in the News

- Heartland Payment Systems Financial Data Compromise
 - <u>http://voices.washingtonpost.com/securityfix/2009/01/</u> payment_processor_breach_may_b.html
- PayPal Cross Site Scripting
 - <u>http://news.netcraft.com/archives/2006/07/20/</u> paypal_xss_exploit_available_for_two_years.html
- T-Mobile SQL Injection
 - <u>http://www.pcworld.com/article/119851/</u>
 <u>paris_hilton_victim_of_tmobiles_web_flaws.html</u>
- IKEA Database Downloaded
 - <u>http://news.cnet.com/2100-1017-245372.html</u>

----- the leading secure software development firm

Demonstration

- How do attackers view your web applications?
- RiskE Utility site

build | integrate | secure

Application Security Defined

© Copyright 2014 Denim Group - All Rights Reserved

Application Security Defined

- A common definition "Ensuring that an attacker cannot compromise an application's resources or data".
 - Too narrow
 - Not very actionable
- A better definition "Ensuring that custom application code performs as expected under the entire range of possible inputs"

Software Implementation – Real World

----- the leading secure software development firm

Application Security is Different

- Quality Assurance?
 - The processes are similar
 - The goals are not
- Traditional Information Security? Network Security?
 - The goals are similar
 - The processes are not

Quality Assurance vs. Security Assurance

Both are evolving practices

DENIM MGROUP

- Tools and techniques are continually improving
- Quality and Security Assurance both require continual effort
 - You cannot declare software 100% bug-free
 - You similarly cannot declare an application 100% secure
- Both are often managed by dedicated teams in addition to the development team

Quality Assurance vs. Security Assurance

- QA, even excellent QA, does not account for security
- QA essentially compares an application to its "intent", its requirements
 - Is the functionality there?

DENIM **DENIM** GROUP

- Is it reliable in corner cases?
- Is the performance acceptable?
- Attackers are interested in what the application DOES that it is NOT SUPPOSED to do
 - I can access my transaction data. Can I access someone else's as well?
 - I can enter a data query string. Can I twist it into a data tampering command?
 - I can upload documents. Can I also upload server pages? Overwrite their content?

Traditional Security vs. Application Security

- Traditional Information Security shares the same goals
 - Confidentiality
 - Integrity

DENIM **DENIM** GROUP

- Availability
- Network and application security experts must continually keep up with the latest threats

Traditional Security vs. Application Security

- Traditional Information Security has a "measure and maintain" culture
 - Track servers, workstations, devices
 - Manage advisories, patches, configurations
 - Monitor the systems in operation
- Application development has a "build" culture
 - Create something that did not exist before
 - Get it working on time and within budget
- Application threats are as unique as the applications themselves

DENIM **O**GROUP

Why Does Application Security Matter?

- Critical Systems are Internet-facing
- Most applications have serious design or coding flaws
- Laws and Regulations

DENIM **DENIM** GROUP

Critical Systems are Internet Facing

- More and more business have moved to online commerce
 - Hard goods, soft goods
 - Flight check-in
 - Personals
 - Pizza Delivery
- This has tremendous advantages
 - Cost of doing business goes down
 - Market barriers are lower

Critical Systems are Internet Facing

- What are the drawbacks?
 - Systems no longer have an "air" gap, personal interaction
 - Physical security and personal scrutiny matter less
- Imagine an ATM machine in the desert...

Most applications have serious flaws

- 70%+ according to studies performed by @Stake and Foundstone
- Too many development teams treat application security as a "check box"
 - "This site is certified secure" labels on web pages
- Too few development teams regard security as fundamental as design or QA

DENIM **DENIM** GROUP

---- the leading secure software development firm

Laws and Regulations

- New laws and regulations govern how data is stored and made available
 - HIPAA
 - Sarbanes Oxley
 - California SB-1386
 - PCI
- Failing to comply can have legal repercussions and damage trust from partners

--- the leading secure software development firm

Application Security Goals

- Confidentiality
- Integrity
- Availability
- A flaw can be considered a security vulnerability when one of the goals is compromised

Confidentiality

 Ensuring that information is accessible only to those authorized to have access

Compromises

- Spoofing Identity
- Direct Object Reference
- Forced Browsing
- Database compromise
- Packet Sniffing
- This is not limited to information the application directly manages
 - What about phishing?
 - An attacker can use an application to manipulate users

Integrity

 Information should only be modified by those users authorized to modify it

Compromises

- Injection
- Direct Object Reference
- Malicious File Execution
- Cross Site Request Forgery
- There is a lot of crossover with Confidentiality, but many threats to Integrity are unique

Availability

- The system is online and responding to user requests for valid users at all times it is supposed to
- Compromises
 - Malicious File Execution
 - Buffer Overflow
 - Lockout Exploits
- Threats are not limited to "bringing down" an application server
 - What about forcing an exception?
 - What about saturating sockets between web and application servers?

----- the leading secure software development firm

What Goes Wrong?

- Failure in Design
- Failure in Implementation

Causes of Application Security Vulnerabilities

- Failure in Design
 - Poor decisions about trust
 - Unspoken assumptions
 - Not accounting for failure
- Failure in Implementation
 - Insecure coding techniques
 - Insecure configuration
 - Poor deployment practices

-- the leading secure software development firm

Types of Vulnerabilities

- Logical Vulnerabilities
 - Surface due to insecure program logic
 - Typically due to poor decisions about trust
 - Most "scanner" tools are powerless to find logical vulnerabilities
 - Remediation: architecture and design changes
- Technical Vulnerabilities
 - Surface due to insecure programming techniques
 - Typically due to poor input handling and input validation
 - Most "scanner" tools primarily find technical vulnerabilities
 - Remediation: coding changes

-- the leading secure software development firm

Common Application Vulnerabilities

- Logical
 - Poor Authentication
 - Direct Object References
 - Unchecked Input
- Technical
 - Cross Site Scripting
 - Injection Flaws
 - Insecure Communications
- Logical or Technical
 - Information Leakage
 - Poor Cryptographic Storage
 - Poor Configuration Management

Software Assurance Maturity Model (OpenSAMM)

- Open framework to help organizations formulate and implement a strategy for software security that is tailored to the specific risks racing the organization
- Useful for:
 - Evaluating an organization's existing software security practices
 - Building a balanced software security program in well-defined iterations
 - Demonstrating concrete improvements to a security assurance program
 - Defining and measuring security-related activities within an organization
- Main website:
 - <u>http://www.opensamm.org/</u>

SAMM Business Functions

- Start with the core activities tied to any organization performing software development
- Named generically, but should resonate with any developer or manager

SAMM Security Practices

- From each of the Business Functions, 3 Security Practices are defined
- The Security Practices cover all areas relevant to software security assurance

• Each one is a 'silo' for improvement

[This slide content © Pravir Chandra]

-- the leading secure software development firm

Conclusions / Questions

Dan Cornell <u>dan@denimgroup.com</u> Twitter: <u>@danielcornell</u>

<u>www.denimgroup.com</u> <u>www.denimgroup.com/threadfix</u> <u>code.google.com/p/threadfix</u> (210) 572-4400