
CSCI 2194 February 22, 2006

Slide 1

Administrivia

• Reminder: Project requirements analysis due today (5pm). Accepted without

penalty through 5pm Friday; after that, 10% off per working day.

• Reminder: Ethics presentations next week. Topics assigned by e-mail to

group leaders. (Some) details on Web. Questions?

Slide 2

Project Status / Next Step

• At this point you should have a reasonably clear idea of what you want your

project/program to do.

• Now what? Code? Probably not — probably better to do some planning

(“design”) first. SO, next project milestone is a design for a prototype

implementation, preferably an object-oriented design (a chance to practice

that!)

• So . . .

(Credit where credit is due, and a note about where to read more:

Most material from today’s lecture comes one of the books mentioned in the

syllabus, Page-Jones’s Fundamentals of Object-oriented Design in UML. Nice

book — the author has a sense of humor, and it shows.

Additions to “useful links” page coming soon.)



CSCI 2194 February 22, 2006

Slide 3

What is “Object-Oriented” Anyway?

• Ask a dozen experts, and you may get a dozen answers — different lists of

characteristics / properties / principles.

(Maybe this is “I know it when I see it, but I can’t define it”?)

• On just about everybody’s list — encapsulation.

• Can get a sense of what this is about, though, by reviewing list of key ideas

from Page-Jones’s book.

• Also may be useful to think about an example familiar to most of you —

Dr. Lewis’s PAD II game framework.

Slide 4

Encapsulation

• What is it? grouping related ideas into one unit, which can thereafter be

referred to by a single name.

• Idea has a long history, going back to first work on packaging

frequently-repeated code as a module / procedure / subroutine / function /

method.

• In object orientation — packaging operations and attributes into an “object

type”, so attributes are modifiable only via interface provided by

encapsulation.



CSCI 2194 February 22, 2006

Slide 5

Information/Implementation Hiding

• What is it? use of encapsulation to restrict some information or

implementation details, so they’re not visible “from outside”.

• Also has a history — “modularity”.

• Key benefit — isolates parts of a system from each other.

Slide 6

State Retention

• What is it? idea that objects, unlike procedural modules, have “state”

(attributes — in Java terms, values of instance variables).

• Also has a history — “abstract data type”.



CSCI 2194 February 22, 2006

Slide 7

Object Identity

• What is it? each object (regardless of class or current state) can be identified

and treated as a distinct entity — each has an “object handle” (in Java terms,

a value for a reference variable).

• Idea is that all other parts of the system can communicate with object via its

“handle”.

Slide 8

Messages

• What is it? vehicle by which sender object O1 conveys to target object O2 a

demand for O2 to apply one of its methods (in Java terms, an invocation of an

instance method).

• Message includes target object’s handle, name of operation it should execute,

parameters/arguments if needed.

• Can think in terms of different kinds of messages — informative (“here is

some info about something that happened”), interrogative (“give me some

info”), imperative (“do something to yourself”).



CSCI 2194 February 22, 2006

Slide 9

Classes

• What are they? stencils from which objects are “instantiated”.

• (You’re probably familiar with the distinction between classes and objects from

Java.)

Slide 10

Inheritance

• What is it? using Java terms, facility by which a subclass has implicitly

defined in it all attributes and operations of superclass, as if they were defined

in subclass itself.

• (This also should seem familiar from Java.)

• One benefit is less (or no) duplication of code.

• Sometimes seems to make sense, if classes fall into some sort of hierarchy.

• Some situations seem to call for “multiple inheritance” (e.g., if modeling a

university, a student worker is both a student and an employee).

• Use with care, though — often misused, especially multiple inheritance.



CSCI 2194 February 22, 2006

Slide 11

Polymorphism

• What is it? two definitions:

– Facility by which a single operation or attribute name can be defined in

more than one class, with different implementations.

– Property by which an attribute or variable can point to objects of different

classes at different times.

(These also should be familiar from Java.)

• More terminology:

Overriding — redefining a class’s method in a subclass.

Overloading — multiple class operations with the same name.

Slide 12

Genericity

• What is it? construction of a class so that one or more classes it uses

internally are supplied only at instantiation time.

• Obvious example of where this is useful — container classes (linked lists,

hash tables, binary trees, etc., etc.).

• (Aside: Java 5.0 (a.k.a. 1.5) includes lots of new and useful support for this

idea — Java answer to C++ templates, though not entirely equivalent.)



CSCI 2194 February 22, 2006

Slide 13

How to Approach Object-Oriented Design

• First step is almost surely to decide how to encapsulate needed operations

and attributes — i.e., identify classes.

• Usually useful to think in terms of real-world (or semi-real-world) objects

being simulated / modeled / used.

• Example — Lewis game framework.

Slide 14

Kinds of Classes (One View)

• Foundation classes — fundamental (integer), structural (list), semantic (date,

time, money, point).

• Architecture classes — for communicating with machine, manipulating

database, HCI, etc. — “utility” classes useful in many applications.

• Business-domain classes — attribute (bank balance), role (customer),

relationship (account ownership).

(Probably a lot of the classes you design will be in this domain.)

• Application-domain classes — event recognizers, event managers. (This part

isn’t clear to me either!)



CSCI 2194 February 22, 2006

Slide 15

Minute Essay

• None — sign in.


