
CSCI 2194 April 26, 2010

Slide 1

Administrivia

• Reminder: Final reports, code, and individual evaluations (of the others in

your group) due today, or ASAP.

• Syllabus lists again what your grade is based on. If your group turned

everything in, and you attended class regularly, you will likely make an A.

Slide 2

A Little History / Rationale

• Impetus for the course — in part, difficulty seniors had with senior software

project, where they were asked for the first time to do requirements analysis,

high-level design, group work, etc. Idea was to give students some prior

practice / experience.

• Prior to most recent catalog change, all majors except first-year took some

section of P/E/D. So common sessions could work as a kind of department

seminar / way to build community among majors. Senior P/E/D, though,

seemed a bit redundant, and we wanted to add CSCI 1194 (survey course),

so it was dropped.

• So now we have only sophomores and juniors. Goals?



CSCI 2194 April 26, 2010

Slide 3

What We Hoped This Course Would Teach You

• The name gives some hints:

– “Professional” — a little about computer science as a profession.

– “Ethics” — a little about ethics as it relates to computer science.

– “Design” — a little about high-level design.

• But it’s only a one-unit course . . .

Slide 4

“Professional”

• Goal — give you some exposure to computing professionals outside

academia, tell you a little about CS as a profession.

• Mostly we do this via outside speakers; this year we had several, from

different companies.



CSCI 2194 April 26, 2010

Slide 5

“Ethics”

• Goal — review “codes of ethics” laid out by professional bodies (ACM, IEEE),

think about how they apply to sample scenarios.

• Mostly we do this by telling you a little about these codes of ethics (lecture by

Dr. Howland), then providing some sample scenarios and making you think

about them.

Slide 6

“Design”

• Goal — give you some exposure to requirements analysis and high-level

design; that is, what to do when you’re given a not-very-well-defined

“problem” and asked to come up with a computing-based “solution”.

Not clear that this can be taught except by asking you to try it, hence the

“design problem”. Possibly you also learn from observing juniors’ and seniors’

presentations.

• Another goal — to provide some practice with ways to represent / formalize

this process.

Hence the lectures on use cases and UML diagrams. Some overlap here with

Software Engineering course.

• Yet another goal — give you some practice working in groups.


