
CSCI 2194 (Professional, Ethics, and Design Seminar), Spring
2011

Example Design Project: Requirements Analysis

1 Use Case Analysis

This system has two classes of users — advisors and advisees — so it seems to make sense to model
each of them as an “actor” in use-case terminology. Use cases for the system include the following.
(“Schedule” here will mean a list of time slots for advising appointments, each of which is either
associated with an advisee or open/available.)

Create schedule. The advisor starts the application and supplies some sort of authentication
(username and password?). The advisor creates a list of time slots (appointments, initially
all open) and saves it. Exactly what the user interface should be is not clear at this point.

Modify schedule. The advisor starts the application and supplies some sort of authentication
(username and password?). The advisor “opens” a previously-created schedule and modifies
it as desired. The advisor should be able to change not only the list of time slots but the
status of each (open or claimed by an advisee). Here too the details of the user interface are
not completely specified.

View schedule. The advisor or advisee starts the application, possibly supplying authentication.
The schedule (time slots and status of each) is displayed.

Sign up for advising time. The advisee starts the application and supplies some sort of authen-
tication (username and password?). The schedule is displayed. If the advisee is already signed
up for a time, an error occurs (and/or the system shifts to the “change advising time” use
case). The advisee chooses an open time slot. The schedule is changed to reflect that the
advisee has “claimed” that time.

Change advising time. The advisee starts the application and supplies some sort of authenti-
cation (username and password?). The schedule is displayed. If the advisee is not already
signed up for a time, an error occurs (and/or the system shifts to the “sign up for advising
time” use case). The advisee chooses an open time slot. The schedule is changed to reflect
that the advisee has “claimed” that time, and the advisee’s previous time slot becomes free.

It seems worth keeping in mind that if the system allows concurrent access by multiple users there
needs to be some synchronization, for example to make sure two advisees do not claim the same
time slot.

2 Use Case Diagram

The diagram in Figure 1 shows the use cases for the system.

1



CSCI 2194 Example Design Project: Requirements Analysis Spring 2011

advisor

advisee

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

log in

display schedule

view schedule

sign up for advising time

change advising time

modify schedule

create schedule

Figure 1: Use cases for the system. Notice use of “include” to factor out what will likely be common
code.

2


	Use Case Analysis
	Use Case Diagram

