
CSCI 2194/3194 January 31, 2011

Slide 1

UML — Review

• “Unified Modeling Language”.

• From originators’ Web site:

“method for specifying, visualizing, and documenting the artifacts of an

object-oriented system under development”

• From UML Distilled :

“family of graphical notations, backed by single meta-model, that help in

describing and designing software systems, particularly software systems

built using the object–oriented style”

• Many things to many people, used in different ways.

Slide 2

UML and Tools

• As mentioned last time, there are tools for drawing various kinds of UML

diagrams. Some interoperate with other tools (e.g., to generate UML class

diagrams from code and vice versa).

• Most tools, alas, seem to cost money. I’ve installed some free ones that seem

reasonably promising in /users/cs2194.



CSCI 2194/3194 January 31, 2011

Slide 3

Types of UML Diagrams — Review

• Version 2.0 of standard includes many different types of diagrams:

Class, Sequence, Object, Package, Deployment, Use Case, State Machine,

Activity, Communication, Composite Structure, Component, Interaction

Overview, Timing.

• We looked at use-case diagrams last time. A quick review of others now . . .

Slide 4

Activity Diagrams

• These model overall flow of control. Might be useful to have one of these for

each use case.

• Similar to old-time flowcharts, with notation for start point, end point, selection

(decision/merge), concurrent actions. Also notations for showing flow of

objects through system, interruptions, which participants are doing what, etc.



CSCI 2194/3194 January 31, 2011

Slide 5

Class Diagrams

• You’re (somewhat) familiar with class diagrams these from PAD II. Can show

many things / many levels of detail:

• For individual classes: attributes and operations and their visibility.

• For groups of classes: relationships, including inheritance and other kinds of

associations (e.g., composition).

• Can become quite complex, but useful as a compact way to show public

attributes/operations of classes, inheritance relationships.

Slide 6

Object Diagrams

• Similar to class diagrams, but represent individual objects.

• Might be useful as part of other types of diagrams?



CSCI 2194/3194 January 31, 2011

Slide 7

Sequence Diagrams

• These provide another way of modeling how things happen. Activity diagrams

focus on overall process, sequence diagrams on participants.

• Notation is in terms of participants (objects or actors) and messages between

them. (E.g., object A invoking a method in object B represented as A sending

a message to B and (optionally) B sending a message back.) As name

suggests, notation makes overall sequence of operations clear. Also can

represent asynchronous interactions.

• (I’m skeptical about these but have seen examples of their use in conference

papers!)

Slide 8

Communication Diagrams

• These provide yet another way of modeling how things happen, but focusing

on interactions among participants.

• Notation is in terms of participants (objects or actors) and messages between

them, without sequence information.

• Simpler to draw and maintain than sequence diagrams, but less informative in

some ways.



CSCI 2194/3194 January 31, 2011

Slide 9

Timing Diagrams

• These provide yet another way of modeling how things happen, but focusing

on timing and states.

• Notation is in terms of participants and states, and makes it clear how

changes in different participants’ states are related.

• Most likely to be useful in describing something with timing constraints (e.g.,

real-time or embedded system).

Slide 10

Interaction Overview Diagrams

• Similar to activity diagrams, but each “action” can be a

sequence/communication/timing diagram.

• Useful as a way of representing a big picture, but examples look rather

complex!



CSCI 2194/3194 January 31, 2011

Slide 11

Composite Structures

• These represent relationships among classes, but in a way that captures

some relationships that aren’t easy to express in class diagrams.

• One type — collaboration diagrams. Often used in describing design patterns.

• (Again I’m a bit skeptical, but I’ve seen examples!)

Slide 12

Component Diagrams

• These are similar in some ways to composite structures diagrams, but

larger-scale(?).

• Useful for modeling systems with components that might be “swappable”.



CSCI 2194/3194 January 31, 2011

Slide 13

Package Diagrams

• These group other diagrams — use case diagrams, class diagrams, etc.

Slide 14

State Machine Diagrams

• These provide yet another way of modeling how things happen, but focusing

on states and transitions.

• Very useful for illustrating some kinds of workflow, including descriptions of

protocols (e.g., TCP).



CSCI 2194/3194 January 31, 2011

Slide 15

Deployment Diagrams

• These show relationships among (semi-?)physical components of a system

— e.g., in a typical Web-based application, they would show interaction

among server hardware/software, client hardware/software, firewalls, etc.

Slide 16

General Advice, Revisited

• Overall idea — standard notation for representing various aspects of software

systems — seems like an obvious win. Sometimes a picture is worth a lot of

words.

• However, one could easily get bogged down in details. So, look at examples,

consider when one of these types of diagrams would add value.


