
CSCI 2321 January 23, 2004

Slide 1

Administrivia

• Reminder: Homework 1 due today, by 5pm. Turn in at end of class or in my

mailbox in department office.

• Homework 2 on Web, due next Friday.

Slide 2

Minute Essay From Last Lecture

• Question:

– Suppose for a given program you have

Instructions Avg cycles/instr Cycle time

Machine X 1 million 1.5 1 ns

Machine Y 1 million 2 0.5 ns

(1 second = 109 ns)

– Which machine is faster? by how much? (e.g., “X is twice as fast as Y”.)

• Answer?

CSCI 2321 January 23, 2004

Slide 3

Recap — Layers of Abstraction

• Software:

– Applications.

– High-level language.

– Machine language.

• Hardware:

– Five-part design (control, datapath, memory, input, output).

– . . .

– Silicon, metal, etc.

• Interface between bottom layer of software and top layer of hardware —

“architecture”.

Slide 4

“Architecture” as Interface Definition

• From software perspective, “architecture” defines lowest-level building blocks

— what operations are possible, what kinds of operands, binary data formats,

etc.

• From hardware perspective, “architecture” is a specification — designers

must build something that behaves the way the specification says.

CSCI 2321 January 23, 2004

Slide 5

Architecture — Key Abstractions

• Memory: Long long list of binary “numbers”, encoding all data (including

programs), each with “address” and “contents”.

When running a program, program itself is in memory; so is its data.

(Intermezzo on binary numbers?)

• Instructions: Primitive operations processor can perform.

• Fetch/execute cycle: What the processor does to execute a program —

repeatedly get next instruction (from memory, location defined by “program

counter”), increment program counter, execute instruction.

• Registers: Fast-access work space for processor, typically divided into

“special-purpose” (e.g., program counter), “general-purpose” (integer and

floating-point).

Slide 6

Terminology Recap/Review

• Repertoire of primitive operations processor can carry out — “instruction set”.

• Sequence of instructions encoded as binary — “object code” or “machine

language”.

• Encoded in symbolic form — “assembly language”.

CSCI 2321 January 23, 2004

Slide 7

Design Goals for Instruction Set

• From software perspective — expressivity.

• From hardware perspective — good performance, low cost.

Slide 8

Why Study MIPS Architecture?

• Goal is not to become assembly-language programmers, but to understand

how things work at this level. Once you understand basic principles, learning

another assembly language is easier.

• MIPS architecture is simple but representative.

Aside: SPIM simulator will let you experiment (commands spim and

xspim). Can also try things on “real hardware” —

puck.cs.trinity.edu (SGI machine).

CSCI 2321 January 23, 2004

Slide 9

Arithmetic Instructions — Addition

• Instruction for integer addition (in assembly-language form):

add a, b, c

Adds b and c giving a.

(Notice the format — symbolic name, operands.)

• Is this expressive enough?

• Should we have more instructions (with different numbers of operands, e.g.)?

“Design Principle 1: Simplicity favors regularity.”

Easier to build simple hardware if ISA is “regular” — e.g., all arithmetic

instructions have exactly three operands.

• sub (subtraction) is similar. Multiplication and division are more complicated,

so punt for now.

• What are the operands? Registers.

Slide 10

Registers

• Access to main memory is slow compared to processor speed, so it’s useful

to have a within-the-chip memory — “registers”.

• MIPS architecture defines 32 “general-purpose” registers, each 32 bits.

• Would more be better?

“Design Principle 2: Smaller is faster.”

• In machine language, reference by number.

• In assembly language, useful to adopt conventions for which registers to use

for what, use symbolic names indicating usage.

E.g., refer to registers 8 through 15 as $t0 through $t7.

Complete list in table A-23 in textbook.

CSCI 2321 January 23, 2004

Slide 11

Example

• Suppose we have this in C

f = (g + h) - (i + j)

• What instructions should compiler produce? Assume we’re using $s0 for f,

$s1 for g, $s2 for h, $s3 for i, $s4 for j.

Slide 12

Memory, Revisited

• Usually we think of memory as big 1D array of 8-bit “bytes”, each with

address (index into array) and contents (value of array element).

• Often we operate on elements in groups of 4 — 32-bit “word”.

• MIPS is a “load/store” architecture, meaning access to memory is limited to

copying data between memory and registers. Alternatives include arithmetic

instructions to operate on memory directly.

(How would that be better? worse?)

CSCI 2321 January 23, 2004

Slide 13

Memory-Access Instructions — Load

• Goal is to get one 32-bit word from memory and put in a register.

• How to specify location in memory? Seems most useful to have address in a

register. For a little more flexibility, specify address in terms of “base” and

“displacement”.

lw r, d(b)

Address specified by contents of register b plus (constant) d. Loads word

into register r.

• sw (“store word”) instruction is similar.

Slide 14

Example

• Suppose we have this in C

g = h + a[8];

• What instructions should compiler produce? Assume we’re using $s3 for

starting (“base”) address of a, $s2 for h, $s1 for g.

CSCI 2321 January 23, 2004

Slide 15

Minute Essay

• Write MIPS assembly code for the following C program fragment:

a = b + c + d + e

Assume we have b, c, d, e in $s1 through $s4 and want to have a in $s0

• Optional: Can you think of more than one way to do it? If you can, does one

seem better than the other, and why?

