
CSCI 2321 January 26, 2004

Slide 1

Administrivia

• Quiz 1 is scheduled for Wednesday. Quizzes are open book, open notes.

• “Useful links” Web page updated with info about SPIM.

• Tuesday office hours now 12:30pm to 3:30pm.

Slide 2

High-Level Languages Versus Assembly Language

• In a high-level language you work with “variables” — conceptually, names for

memory locations. You can do arithmetic on them, copy them, etc.

• In machine/assembly language, what you can do may be more restricted —

e.g., in MIPS architecture, you must load data into a register before doing

arithmetic).

• The compiler’s job is to translate from the somewhat abstract HLL view to

machine language. To do this, normally associate variables with registers —

load data from memory into registers, calculate, store it back. A “good”

compiler tries to minimize loads/stores.

CSCI 2321 January 26, 2004

Slide 3

Minute Essay From Last Lecture

• Question: Write MIPS assembly code for the following C program fragment:

a = b + c + d + e

Assume we have b, c, d, e in $s1 through $s4 and want to have a in $s0

(Optional: Can you think of more than one way to do it? If you can, does one

seem better than the other, and why?)

• Possible answers?

Slide 4

Load/Store Example

• Suppose we have this in C

a[12] = h + a[8];

• What instructions should compiler produce? Assume we’re using $s3 for

starting (“base”) address of a, $s2 for h.

CSCI 2321 January 26, 2004

Slide 5

Another Load/Store Example

• Suppose we have this in C

g = h + a[j];

• What instructions should compiler produce? Assume we’re using $s3 for

starting (“base”) address of a, $s1, $s2, $s4 for g, h, j.

Slide 6

Another Load/Store Example, Continued

• The method we used for finding the address of a[j] seems clumsy.

Shouldn’t we use multiply? (Maybe not!)

• Wouldn’t it be convenient to specify the address with two registers? (Yes, and

some architectures allow this, but MIPS doesn’t.)

CSCI 2321 January 26, 2004

Slide 7

Representing Instructions in Binary

• First consider what we have to represent:

– For all instructions, which instruction it is.

– For add and sub, three operands (all register numbers).

– For lw and sw, three operands (two register numbers and a

“displacement”).

– And so forth . . .

• So, each instruction will have “fields” — consistent format for storing pieces of

data, a little like a C struct.

Slide 8

Representing Instructions in Binary, Continued

• So, can we use the same format for all instructions? Some data (“which

instruction”) is common to all, but operands may need to be different.

• Can we / should we make all instructions the same length? For MIPS, yes

(other architectures differ), and then define different ways of dividing up the

length — “formats”.

“Design Principle 3: Good design involves good compromises.”

CSCI 2321 January 26, 2004

Slide 9

R Format

• Meant for instructions such as add.

• Fields:

– op — op code, 6 bits

– rs — first source operand, 5 bits

– rt — second source operand, 5 bits

– rd — destination operand, 5 bits

– shamt — “shift amount” (not used for add), 5 bits

– funct — “function field”, 6 bits

• Example — find binary representation of

add $t0, $s1, $s2

Look up op in table on inside back cover, registers in table on p. A-23.

Slide 10

I Format

• Meant for instructions such as lw.

• Fields:

– op — op code, 6 bits

– rs — first source operand, 5 bits

– rt — destination operand, 5 bits

– disp — displacement, 16 bits

• Example — find binary representation of

lw $t0, 1200($t1)

Look up op in table on inside back cover, registers in table on p. A-23.

• How can we tell which format is being used? determined by value for op.

CSCI 2321 January 26, 2004

Slide 11

Minute Essay

• Write MIPS assembler code to exchange the values of a[0] and a[1].

Assume register $s0 contains the address of a (start of the array), and a is

an array of integers.

