
CSCI 2321 January 30, 2004

Slide 1

Administrivia

• Reminder: Homework 2 due by 5pm today.

• Quiz solutions will be available on the Web, usually shortly after class.

Slide 2

Flow of Control, Review

• Instructions we have so far for testing conditions and changing “flow of

control”:

– beq r1, r2, label — compares contents of registers r1 and r2

and “branches” to label if equal. (Punt for now on what label

means.)

– bne r1, r2, label — similar but branches if not equal.

– j label — unconditionally “jumps” to label.

• Do we have enough to do loops?

CSCI 2321 January 30, 2004

Slide 3

Loop Examples

• “Compile” the following C:

Loop: g = g + A[i];

i = i + j;

if (i != h) goto Loop:

assuming we’re using $s1 through $s4 for g, h, i, j, and $s5 for the

address of A.

• Or how about something that looks more like normal C?

while (A[i] == k) {

i = i + j;

Slide 4

More Flow of Control

• We can do if/then/else and loops, but only if condition being tested is equals /

not equals.

• So, we need instructions such as blt, ble, right?

• But those are difficult to implement well, so instead MIPS has “set on less

than”:

slt r1, r2, r3

which compares the contents of registers r2 and r3 and sets r1 — 1 if r2

is smaller, else 0.

• Also define that register 0 ($zero) always contains 0.

• Example — compile the following C:

if (a < b) go to Less:

assuming we’re using $s0, $s1 for a, b

CSCI 2321 January 30, 2004

Slide 5

More Flow of Control, Continued

• Do we have enough now? for all six possible C comparisons of integers? Yes

. . .

• One more C flow-of-control construct we could talk about — switch — but

defer for now.

• But we do want to talk about one more HLL feature . . .

Slide 6

Procedure Calls

• How do we call procedures (a.k.a. functions, methods)? Consider an

example:

a = a + a;

x = foo(a);

b = b + b;

y = foo(b);

• If we’ve compiled this code (and function foo), what do we have in memory

when it’s running? What’s supposed to happen when we get to a call to foo?

CSCI 2321 January 30, 2004

Slide 7

Procedure Calls, Continued

• So, what we have to do to call a procedure is:

1. Put parameters where procedure can find them.

2. Transfer control to procedure.

3. Acquire storage resources for procedure (recall that every time you call a

C function you get a “new copy” of all its local variables).

4. Run procedure.

5. Put results where caller can find them.

6. Return control to caller.

• How to do all this? To be continued . . .

Slide 8

A Little About the Simulator

• Your code goes in a file with extension .s.

• Start the simulator with command xspim. Need a copy of

/usr/local/spim-6.3/trap.handler in the current directory.

(Short demo.)

CSCI 2321 January 30, 2004

Slide 9

Minute Essay

• Write MIPS assembler for the following C code fragment:

while (i < h) {

A[i] = i;

i = i + j;

}

assuming we’re using $s1 through $s3 for h, i, j, and $s4 for the

address of A.

