February 2, 2002

CSCI 2321
Administrivia
® Sample programs on Web.
Slide 1
Minute Essay From Last Lecture
e Question: Write MIPS assembler for the following C code fragment:
while (i < h) {
Ali] = 1i;
i=1i+ 73;
Slide 2 J

assuming we're using $s1 through $s3 for h, i, j, and $s4 for the

address of A.

o Answer?

CSCI 2321 February 2, 2002

Procedure Calls, Review

o What we have to do to call a procedure is:
1. Put parameters where procedure can find them.
2. Transfer control to procedure.

3. Acquire storage resources for procedure (recall that every time you call a
Slide 3 C function you get a “new copy” of all its local variables).

4. Run procedure.
5. Put results where caller can find them.

6. Return control to caller.

o How to do all this?

Register Conventions

e From hardware point of view, all registers are equal (except 0).

e From software point of view, it's useful to agree about how to use them — for
parameters, return values, etc. Idea is that compilers automatically enforce
conventions, human-written assembly code should follow them too.

Slide 4 e So far — $s0 through $s7 used for variables, $t 0 through $t 9 used as
“scratch pads”. (See table on p. A-23 for numeric equivalents.)

e Add two more groups — $a0 through $a3 for parameters (punt for now on
what to do if more than four), $v0 and $v1 for return values.

CSCI 2321 February 2, 2002

Jumping To/From Procedures

o When we jump to a procedure, must remember where we came from so we

can return. Do this with “jump and link”
jal label
which puts address of next instruction in register Sra and jumps to 1abel.
Slide 5 (How do we know address of next instruction? “Program counter” (special
register) has address of current instruction.)
o We can then get back with “jump to register”
jr rl

which jumps to address in register r1.

Register Saving and Local Variables

e Actually running the called procedure is straightforward, right?

e Yes, except we need some way to save/restore registers — so we don’t mess
up caller (by convention, “temporary” registers might change, but most others

don’t). Other reason(s)?

Slide 6 o We also need a way to make space for local variables.

CSCI 2321 February 2, 2002

Register Saving and Local Variables, Continued

o Common solution — use part of memory as a stack (familiar ADT, right?), for
saving registers and other local storage. Makes recursive procedures easier.

e By convention, stack starts at high address and “grows” to lower addresses,

and register $sp (“stack pointer”) points to top.
Slide 7 o How to push / pop?

e Since $sp can change during computation, can use register $ fp (“frame
pointer”) to point to start of area (“procedure frame”) for saved registers, local

variables.

Procedure Calls, Revisited

e Calling procedure must:
— Put parameters in $a0 through $a3 (if more than four, on stack).

— Determine address of called procedure and jump there, saving address of

next instruction.

Slide 8 — Get return value from $vO0 (and $v1, if used).

e Called procedure must:

Save registers as needed, including return address.

Retrieve parameters and do calculation.

Put results in $v0 and Sv1.

Restore saved registers.

Return to caller.

CSCI 2321

February 2, 2002

Slide 9

One More Useful Instruction

e “Add immediate”
addi rl, r2, c
adds constant ¢ (16-bit signed integer, can be negative) to contents of r2,
puts resultin r1.

Slide 10

Example

e How to compile the following?

int main () {
a =>5; b=26; c=17;
x = addproc(a, b, c);
return 0;

}

int addproc(int a, int b, int c) {
int x;
x =a+ b+ c;
return x;

}

(Sample program call-addproc.s.)

CSCI 2321

February 2, 2002

Slide 11

\
e What does the following code do? i.e., what is in registers $s0 and $s1
after it executes?
add $s0, $Szero
addi $s1, 1
addi $s2, 4
11:
addi $s0,
add $si1, $Ssl
bne $s0,
J

