
CSCI 2321 February 2, 2002

Slide 1

Administrivia

• Sample programs on Web.

Slide 2

Minute Essay From Last Lecture

• Question: Write MIPS assembler for the following C code fragment:

while (i < h) {

A[i] = i;

i = i + j;

}

assuming we’re using $s1 through $s3 for h, i, j, and $s4 for the

address of A.

• Answer?



CSCI 2321 February 2, 2002

Slide 3

Procedure Calls, Review

• What we have to do to call a procedure is:

1. Put parameters where procedure can find them.

2. Transfer control to procedure.

3. Acquire storage resources for procedure (recall that every time you call a

C function you get a “new copy” of all its local variables).

4. Run procedure.

5. Put results where caller can find them.

6. Return control to caller.

• How to do all this?

Slide 4

Register Conventions

• From hardware point of view, all registers are equal (except 0).

• From software point of view, it’s useful to agree about how to use them — for

parameters, return values, etc. Idea is that compilers automatically enforce

conventions, human-written assembly code should follow them too.

• So far — $s0 through $s7 used for variables, $t0 through $t9 used as

“scratch pads”. (See table on p. A-23 for numeric equivalents.)

• Add two more groups — $a0 through $a3 for parameters (punt for now on

what to do if more than four), $v0 and $v1 for return values.



CSCI 2321 February 2, 2002

Slide 5

Jumping To/From Procedures

• When we jump to a procedure, must remember where we came from so we

can return. Do this with “jump and link”

jal label

which puts address of next instruction in register $ra and jumps to label.

(How do we know address of next instruction? “Program counter” (special

register) has address of current instruction.)

• We can then get back with “jump to register”

jr r1

which jumps to address in register r1.

Slide 6

Register Saving and Local Variables

• Actually running the called procedure is straightforward, right?

• Yes, except we need some way to save/restore registers — so we don’t mess

up caller (by convention, “temporary” registers might change, but most others

don’t). Other reason(s)?

• We also need a way to make space for local variables.



CSCI 2321 February 2, 2002

Slide 7

Register Saving and Local Variables, Continued

• Common solution — use part of memory as a stack (familiar ADT, right?), for

saving registers and other local storage. Makes recursive procedures easier.

• By convention, stack starts at high address and “grows” to lower addresses,

and register $sp (“stack pointer”) points to top.

• How to push / pop?

• Since $sp can change during computation, can use register $fp (“frame

pointer”) to point to start of area (“procedure frame”) for saved registers, local

variables.

Slide 8

Procedure Calls, Revisited

• Calling procedure must:

– Put parameters in $a0 through $a3 (if more than four, on stack).

– Determine address of called procedure and jump there, saving address of

next instruction.

– Get return value from $v0 (and $v1, if used).

• Called procedure must:

– Save registers as needed, including return address.

– Retrieve parameters and do calculation.

– Put results in $v0 and $v1.

– Restore saved registers.

– Return to caller.



CSCI 2321 February 2, 2002

Slide 9

One More Useful Instruction

• “Add immediate”

addi r1, r2, c

adds constant c (16-bit signed integer, can be negative) to contents of r2,

puts result in r1.

Slide 10

Example

• How to compile the following?

int main() {

a = 5; b = 6; c = 7;

x = addproc(a, b, c);

return 0;

}

int addproc(int a, int b, int c) {

int x;

x = a + b + c;

return x;

}

(Sample program call-addproc.s.)



CSCI 2321 February 2, 2002

Slide 11

Minute Essay

• What does the following code do? i.e., what is in registers $s0 and $s1

after it executes?

add $s0, $zero, $zero

addi $s1, $zero, 1

addi $s2, $zero, 4

l1:

addi $s0, $s0, 1

add $s1, $s1, $s1

bne $s0, $s2, l1


