
CSCI 2321 February 4, 2004

Slide 1

Administrivia

• Homework 3 (covering chapter 3) coming soon, probably Friday.

• If you’re curious about full details of MIPS assembly language — read

appendix A.

Slide 2

Minute Essay From Last Lecture

• Question: What does the following code do? i.e., what is in registers $s0

and $s1 after it executes?

add $s0, $zero, $zero

addi $s1, $zero, 1

addi $s2, $zero, 4

l1:

addi $s0, $s0, 1

add $s1, $s1, $s1

bne $s0, $s2, l1

• Answer?

CSCI 2321 February 4, 2004

Slide 3

Stack Usage — Recap/Review

• MIPS convention is to define a “stack” in memory to hold parameters, saved

registers, local variables. $sp register points to top of stack, which “grows”

toward lower addresses.

(How would this look during a recursive procedure?)

• An aside — how this relates to “buffer overruns”.

• This works well and is pretty common, but other approaches are possible.

Slide 4

Data Formats, Revisited

• Recall, inside the computer “it’s all ones and zeros” — so we must encode

anything we want to represent:

– Integers — binary numbers, often 32 bits for MIPS, but could be other

sizes too. How to represent negative integers? Later.

– Text — ASCII (8 bits per character) or Unicode (16 bits).

– Real numbers — floating-point format, again later.

– Many, many more complex formats (.doc, MP3, GIF, etc.).

• MIPS architecture defines lw and sw for loading/storing data in 32-bit

chunks; also defines lb (“load byte”) and sb (“store byte”) for loading/storing

data in 8-bit chunks, plus instructions to load/store data in 16-bit chunks.

All must align on appropriate boundaries.

CSCI 2321 February 4, 2004

Slide 5

Working with Constants, Revisited

• Recall addi instruction. Exists because often we need to use a small

constant in a program.

“Design Principle 4: Make the common case fast.”

• Uses same format (“I format”) as lw and sw, which allows 16 bits for

constant.

• What if we need more than 16 bits? “Load upper immediate” instruction:

lui register, constant

Puts (16-bit) constant in “upper” 16 bits of register. Follow with addi (or,

better, ori) to load a full 32-bit constant.

Example?

Slide 6

Addressing Modes

• We’ve been unspecific about how to specify addresses of a lot of things.

• So, now look at various “addressing modes” — ways to specify where to find

an operand:

– Register addressing: Value is in one of the general-purpose registers.

Examples?

– Immediate addressing: Value is in instruction itself. Examples?

– Base-displacement addressing: Value is in memory, with address

calculated by adding a displacement to what’s in a register. Examples?

– PC-relative addressing.

– Pseudo-direct addressing.

• Which is used? Defined by instruction format (R, I, J).

CSCI 2321 February 4, 2004

Slide 7

PC-Relative Addressing

• Address is formed by adding offset in instruction (16 bits) and contents of the

program counter (special register).

(Actually, address is offset times 4, plus the updated program counter.)

• Examples? conditional branches (beq, bne).

• Does this limit what we can do with beq and bne? If so, how often will it

matter? What could we do to work around it?

Slide 8

Pseudo-Direct Addressing

• Address is formed by combining address in instruction (26 bits) and upper bits

of program counter.

(Actually, address is address in instruction times 4, or’d with upper bits of

program counter.)

• Example? unconditional branch (j).

• Does this limit what we can do with j? If so, will that be a problem? Can we

work around it?

CSCI 2321 February 4, 2004

Slide 9

Addressing Modes and Machine Language

• Nice summary of addressing modes in textbook figure 3.17.

• Now let’s look at an example — machine language for this C:

while (a[i] == k) {

i = i + j;

}

Assume we’re using $s3 through $s6 for i, j, k, address of a, and that

code is in memory at (decimal) location 80000.

• What does the machine code look like?

Slide 10

Minute Essay

• Write MIPS assembler code for the following procedure, saving/restoring the

return address at least:

int foo(int a, int b) {

return a + b;

}

