
CSCI 2321 February 6, 2004

Slide 1

Administrivia

• For the adventurous: We have a “real” MIPS machine, Puck. The “Useful

links” page has a link to some notes on logging in and using it.

• Notice change in reading for today — do read (or at least skim) all sections of

chapter 3.

• Homework 3 on Web, due next Friday. Notice that I also want you to turn in

source code by e-mail. Please read the instructions.

Slide 2

Minute Essay From Last Lecture

• Question: Write MIPS assembler code for the following procedure,

saving/restoring the return address at least:

int foo(int a, int b) {

return a + b;

}

• Answer?



CSCI 2321 February 6, 2004

Slide 3

“Reverse Engineering” Machine Language

• Once upon a time, when your program crashed, you got a “core dump”

showing contents of memory, including your program’s machine language,

plus contents of registers (including program counter). How did people cope?

• Even now, the real “spec” for hardware designers is machine language. How

to figure out what the ones and zeros mean?

• Let’s do an example — figure out assembly-language equivalent of

0x00af8020.

Slide 4

From HLL Source to Program in Memory

• Compilers turn HLL source into (conceptually) assembly language or (more

frequently) object code.

• Assemblers turn assembly-language source into object code.

• Linkers turn object code (plus libraries) into executables.

• Loaders load executables into memory and start them up.



CSCI 2321 February 6, 2004

Slide 5

Compilers

• Compiler’s job is to turn HLL source into something lower-level. Can produce

assembly-language source, but usually goes straight to object code.

• Some aspects are relatively straightforward — e.g., generating

assembly/object code that’s semantically equivalent.

• Some aspects are not so straightforward — “parsing” source code, and

“optimizing” generated code. May be covered in course on programming

languages. Or read the “dragon book” (Compilers: Principles, Techniques and

Tools, by Aho, Sethi, and Ullman).

Slide 6

Assemblers

• Assembler’s job is to turn “assembly language source code” into object code.

Such code includes:

– Instructions (from ISA) in symbolic form.

– “Pseudoinstructions” that are somewhat higher-level but still very easy to

convert to real instructions. MIPS examples include move, li, la.

– Declarations for data (constants, static variables, etc.).

– Other directives.

• Most aspects of this are straightforward. Usually set up “symbol table” to

translatea symbolic address (labels) to addresses. Notice, though:

– Some addresses might be impossible to compute at this point — e.g., calls

to library routines.

– Some addresses are relative to PC and so don’t depend on where in

memory the program resides. Others are “absolute”.



CSCI 2321 February 6, 2004

Slide 7

Linkers

• Linker’s job (sometimes looks like part of compiler) is to turn “object code”

generated by compiler or assembler into “executable”.

• Format of “object code” file can depend on operating system. E.g., on Unix

systems typically includes header, info for debugger, and:

– Text segment — object code, a.k.a. machine language.

– Data segment — constants, static variables.

– Relocation information – whatever is needed to “fix up” absolute

addresses when program is loaded.

– Symbol table — locations of externally-visible symbols (e.g., procedure

names), unresolved references (e.g., to library procedures).

• Linker must resolve unresolved references, pulling in library code as needed,

and also “fix up” absolute addresses if necessary (for modern systems,

usually not).

Slide 8

Loaders

• Loader’s job is to copy “executable” into memory and get it ready to run.

Format of executable depends on operating system, but usually similar to

object code.

• Details depend on operating system, but in general, loader must look at

executable to determine how much memory is needed, allocate it (ask o/s),

copy instructions into memory, set up parameters and registers, and “call” it

(passing in parameters as needed and providing a return address — in loader

or o/s, usually).



CSCI 2321 February 6, 2004

Slide 9

Minute Essay

• Anything we should talk about more before moving on to chapter 4?

• “Pretest” for chapter 4:

– Convert 34 (base 10) to binary (base 2).

– Convert 34 (base 10) to hexadecimal (base 16).

– Convert 19 (base 16) to decimal (base 10).

– Convert -34 (base 10) to binary, using 16-bit two’s complement notation.


