Administrivia

- Reminder: Quiz 2 Wednesday.

Slide 1

Minute Essay From Last Lecture

- Convert 34 (base 10) to binary (base 2).
- Convert 34 (base 10) to hexadecimal (base 16).
- Convert 19 (base 16) to decimal (base 10).

Slide 2

- Convert -34 (base 10) to binary, using 16-bit two's complement notation.

Arrays and Pointers

- Recall (or observe) that in C (and C++) arrays and pointers are "the same": void foo(char msg[]) same as void foo(char *msg).
- Consider two ways of setting all elements of an array to 0 :

```
void clearl(int a[], int n) {
        for (int i = 0; i < n; ++i)
                        a[i] = 0;
}
void clear2(int *a, int n) {
        for (int *p = a; p < a+n, ++p)
            *p = 0;
}
```

Once upon a time, people interested in writing fast code were told to use
clear2. Why?

Arrays and Pointers, Continued

- Compare code for clear1 (left) and clear2 (right):

- Which is faster? (Look at the instructions marked with *.)

Binary Versus Decimal

- In decimal (base 10) notation, each digit is multiplied by a power of 10. Same idea for binary (base 2), but using powers of 2.
- So, converting from binary to decimal is easy (if tedious), working from definition. Example?

Slide 5

- Converting from decimal to binary? Repeatedly divide by 2 and record remainders ...

We could describe this as a recursive algorithm for computing bits (n):

- Base case is $n<2$; trivial.
- For recursive step, divide n by 2 to get quotient q and remainder r. Then $n=2 q+r$, and:
The last bit of $\operatorname{bits}(n)$ should be r.
The remaining bits are $\operatorname{bits}(q)$, left-shifted by 1 .
- Terminology: "Least significant" and "most significant" bits.

Binary Versus Hexadecimal

- Binary is useful for showing real internal state but not very compact. Decimal is compact but not so easy to convert to/from binary.
- We might notice - easy to convert to/from a base that's a power of 2. Hence the use of "octal" (base 8) and "hexadecimal" (base 16). For the latter, we need more than 10 digits, so we use " A " through " F ".

Examples?

- Notice that we can also convert directly to/from decimal, much as we did for binary.

Representing Integers

- Representing non-negative integers is easy - convert to binary and pad on the left with zeros.
- What about negative integers?
- Could try using one bit for sign, but then you have +0 and -0 , and there are

Slide 7

 other complications.- Or ... consider a car odometer - in effect, representable numbers form a circle, since adding 1 to largest number yields 0 .

Representing Integers, Continued

- We could implement the car-odometer idea in binary, and then choose where to "cut the circle" (between smallest and largest):
- Between 0 and all ones - unsigned integers.
- Between largest number with 0 as the MSB and smallest number with 1 as

Slide $8 \quad$ MSB — "two's complement" signed integers.

- Notice that with the two's complement scheme, $+1 /-1$ moves us "around the circle" - nothing special needed for negative numbers.
- Notice that if we have n bits, adding 2^{n} to x gives us x again. This leads to an easy way to compute $-x$: Compute $2^{n}-x$, and notice that $2^{n}-x=\left(2^{n}-1\right)-x+1$
which is very easy to compute ...
Examples?

