
CSCI 2321 February 9, 2004

Slide 1

Administrivia

• Reminder: Quiz 2 Wednesday.

Slide 2

Minute Essay From Last Lecture

• Convert 34 (base 10) to binary (base 2).

• Convert 34 (base 10) to hexadecimal (base 16).

• Convert 19 (base 16) to decimal (base 10).

• Convert -34 (base 10) to binary, using 16-bit two’s complement notation.

CSCI 2321 February 9, 2004

Slide 3

Arrays and Pointers

• Recall (or observe) that in C (and C++) arrays and pointers are “the same”:

void foo(char msg[]) same as void foo(char *msg).

• Consider two ways of setting all elements of an array to 0:

void clear1(int a[], int n) {

for (int i = 0; i < n; ++i)

a[i] = 0;

}

void clear2(int *a, int n) {

for (int *p = a; p < a+n, ++p)

*p = 0;

}

Once upon a time, people interested in writing fast code were told to use

clear2. Why?

Slide 4

Arrays and Pointers, Continued

• Compare code for clear1 (left) and clear2 (right):

add $t0, $zero, $zero # i

loop: add $t1, $t0, $t0 # 2*i

add $t1, $t1, $t1 # 4*i

add $t2, $a0, $t1 # addr(a[i])

sw $zero, 0($t2)

addi $t0, $t0, 1

slt $t3, $t0, $a1

bne $t3, $zero, loop

add $t0, $a0, $zero # p

loop: sw $zero, 0($t0)

addi $t0, $t0, 4

add $t1, $a1, $a1 # 2*n (*)

add $t1, $t1, $t1 # 4*n (*)

add $t2, $a0, $t1 # a+n (*)

slt $t3, $t0, $t2

bne $t3, $zero, loop

• Which is faster? (Look at the instructions marked with *.)

CSCI 2321 February 9, 2004

Slide 5

Binary Versus Decimal

• In decimal (base 10) notation, each digit is multiplied by a power of 10. Same

idea for binary (base 2), but using powers of 2.

• So, converting from binary to decimal is easy (if tedious), working from

definition. Example?

• Converting from decimal to binary? Repeatedly divide by 2 and record

remainders . . .

We could describe this as a recursive algorithm for computing bits(n):

– Base case is n < 2; trivial.

– For recursive step, divide n by 2 to get quotient q and remainder r. Then

n = 2q + r, and:

The last bit of bits(n) should be r.

The remaining bits are bits(q), left-shifted by 1.

• Terminology: “Least significant” and “most significant” bits.

Slide 6

Binary Versus Hexadecimal

• Binary is useful for showing real internal state but not very compact. Decimal

is compact but not so easy to convert to/from binary.

• We might notice — easy to convert to/from a base that’s a power of 2. Hence

the use of “octal” (base 8) and “hexadecimal” (base 16). For the latter, we

need more than 10 digits, so we use “A” through “F”.

Examples?

• Notice that we can also convert directly to/from decimal, much as we did for

binary.

CSCI 2321 February 9, 2004

Slide 7

Representing Integers

• Representing non-negative integers is easy — convert to binary and pad on

the left with zeros.

• What about negative integers?

• Could try using one bit for sign, but then you have +0 and -0, and there are

other complications.

• Or . . . consider a car odometer — in effect, representable numbers form a

circle, since adding 1 to largest number yields 0.

Slide 8

Representing Integers, Continued

• We could implement the car-odometer idea in binary, and then choose where

to “cut the circle” (between smallest and largest):

– Between 0 and all ones — unsigned integers.

– Between largest number with 0 as the MSB and smallest number with 1 as

MSB — “two’s complement” signed integers.

• Notice that with the two’s complement scheme, +1/-1 moves us “around the

circle” — nothing special needed for negative numbers.

• Notice that if we have n bits, adding 2n to x gives us x again. This leads to

an easy way to compute−x: Compute 2n − x, and notice that

2n − x = (2n − 1)− x+ 1

which is very easy to compute . . .

Examples?

CSCI 2321 February 9, 2004

Slide 9

Minute Essay

• Convert 3010 to binary and then to hexadecimal.

• Convert−3010 to 16-bit two’s complement notation; show in binary and

hexadecimal.

• Convert 2a16 to decimal.

