
CSCI 2321 February 11, 2004

Slide 1

Administrivia

• Reminder: Homework 3 due Friday. (Remember that for two problems you

should also e-mail me your code.)

Slide 2

Minute Essay From Last Lecture

• Convert 3010 to binary and then to hexadecimal.

• Convert−3010 to 16-bit two’s complement notation; show in binary and

hexadecimal.

• Convert 2a16 to decimal.

CSCI 2321 February 11, 2004

Slide 3

Number Systems, Recap/Review

• Binary and hexadecimal number systems work like decimal — digits are

multiplied by increasing powers of the “base”. (Slight notational complication

in that hex requires more than 10 digits.)

• To convert binary/hex to decimal, use above definition. To convert the other

way, repeatedly divide by base and record remainders; these are desired

digits, right to left. Why this works — view as recursive procedure.

• To convert binary to hexadecimal (or octal), group bits and convert each to a

digit. Why this works — not-too-tough algebra.

Slide 4

Representing Integers, Review/Recap

• Representing non-negative integers is easy — convert to binary and pad on

the left with zeros.

• What about negative integers? “Two’s complement” notation — makes

arithmetic simpler, as we’ll see.

Idea loosely based on car-odometer analogy — if we have n bits, number

“after” all ones is all zeros. We then decide to use half the possible values

(the ones starting with one) to represent negative numbers.

• How to get two’s complement representation of−x?

Notice that if we have n bits, adding 2n to x gives us x again. This leads to

an easy way to compute−x: Compute 2n − x, and notice that

2n − x = (2n − 1)− x+ 1

which is very easy to compute. (Try some examples.)

CSCI 2321 February 11, 2004

Slide 5

Sign Extension

• If we have a number in 16-bit two’s complement notation (e.g., the constant in

an I-format instruction), do we know how to “extend” it into a 32-bit number?

For non-negative numbers, easy.

For negative numbers, also not too hard — consider taking absolute value,

extending it, then taking negative again.

• In effect — “extend” by duplicating sign bit.

Slide 6

Signed Versus Unsigned

• If we have n bits, we can use them to represent signed values in — what

range?

Or we can use them to represent non-negative values only (“unsigned

values”) — then what range?

• Many MIPS instructions have “unsigned” counterparts — addu, addiu,

sltu, etc.

• Example: Suppose we have

0000 0000 in $t0

ffff fff2 in $t1

What happens if we execute slt $t2, $t0, $t1?

What happens if we execute sltu $t2, $t0, $t1?

(Same bits, different interpretations!)

CSCI 2321 February 11, 2004

Slide 7

Two’s Complement and Addition/Subtraction

• Addition in binary works much like addition in decimal (taking into account the

different bases). Notice what happens if one number is negative. (Try an

example or two.)

• Subtraction could also be done the way we do in decimal. Or how else could

we do it? (Again, try some examples.)

• But there is one catch, related to the fact that operands and result are all n

bits. What is it?

Slide 8

Addition/Subtraction and Overflow

• If we’re adding A and B, there are four cases to think about — both

non-negative, etc. Two of them can give a wrong result because there aren’t

enough bits. Which ones? How can we tell the result is wrong?

• MIPS signed arithmetic instructions detect overflow and “generate an

exception” (more later).

• MIPS unsigned arithmetic instructions ignore overflow. In a HLL, you may or

may not want an exception on overflow. The compiler can choose signed if

yes or unsigned if no.

CSCI 2321 February 11, 2004

Slide 9

Minute Essay

• None — quiz.

