Administrivia

- Reminder: Homework 3 due Friday. (Remember that for two problems you should also e-mail me your code.)

Slide 1

Minute Essay From Last Lecture

- Convert 30_{10} to binary and then to hexadecimal.
- Convert -30_{10} to 16 -bit two's complement notation; show in binary and hexadecimal.
- Convert $2 a_{16}$ to decimal.

Number Systems, Recap/Review

- Binary and hexadecimal number systems work like decimal - digits are multiplied by increasing powers of the "base". (Slight notational complication in that hex requires more than 10 digits.)
- To convert binary/hex to decimal, use above definition. To convert the other

Slide 3

 way, repeatedly divide by base and record remainders; these are desired digits, right to left. Why this works - view as recursive procedure.- To convert binary to hexadecimal (or octal), group bits and convert each to a digit. Why this works - not-too-tough algebra.

Representing Integers, Review/Recap

- Representing non-negative integers is easy - convert to binary and pad on the left with zeros.
- What about negative integers? "Two's complement" notation - makes arithmetic simpler, as we'll see.

Slide $4 \quad$ Idea loosely based on car-odometer analogy - if we have n bits, number "after" all ones is all zeros. We then decide to use half the possible values (the ones starting with one) to represent negative numbers.

- How to get two's complement representation of $-x$?

Notice that if we have n bits, adding 2^{n} to x gives us x again. This leads to an easy way to compute $-x$: Compute $2^{n}-x$, and notice that
$2^{n}-x=\left(2^{n}-1\right)-x+1$
which is very easy to compute. (Try some examples.)

Sign Extension

- If we have a number in 16 -bit two's complement notation (e.g., the constant in an I-format instruction), do we know how to "extend" it into a 32-bit number? For non-negative numbers, easy.

For negative numbers, also not too hard - consider taking absolute value,

Slide 5

 extending it, then taking negative again.- In effect - "extend" by duplicating sign bit.

Signed Versus Unsigned

- If we have n bits, we can use them to represent signed values in - what range?

Or we can use them to represent non-negative values only ("unsigned values") - then what range?

Slide 6

- Many MIPS instructions have "unsigned" counterparts - addu, addiu, sltu, etc.
- Example: Suppose we have

00000000 in $\$$ to
ffff fff2 in \$t1
What happens if we execute slt $\$ \mathrm{t} 2, \$ \mathrm{t} 0, \$ \mathrm{t} 1 ?$
What happens if we execute sltu \$t2, \$t0, \$t1?
(Same bits, different interpretations!)

Two's Complement and Addition/Subtraction

- Addition in binary works much like addition in decimal (taking into account the different bases). Notice what happens if one number is negative. (Try an example or two.)
- Subtraction could also be done the way we do in decimal. Or how else could

Slide 7

 we do it? (Again, try some examples.)- But there is one catch, related to the fact that operands and result are all n bits. What is it?

Addition/Subtraction and Overflow

- If we're adding A and B, there are four cases to think about - both non-negative, etc. Two of them can give a wrong result because there aren't enough bits. Which ones? How can we tell the result is wrong?
- MIPS signed arithmetic instructions detect overflow and "generate an

Slide $8 \quad$ exception" (more later).

- MIPS unsigned arithmetic instructions ignore overflow. In a HLL, you may or may not want an exception on overflow. The compiler can choose signed if yes or unsigned if no.

