Administrivia

- None.

Slide 1

Minute Essay From Last Lecture

- Question: Suppose $\$ t 0$ contains $0 x f f f f f f f f$ and $\$ t 1$ contains $0 x 000000 \mathrm{ff}$. What is in $\$ t 2, \$ t 3, \$ t 4$ after the following instructions are executed? Answers in either binary or hexadecimal are fine.

```
sll $t2, $t0, 4
and $t3, $t0, $t1
or $t4, $t0, $t1
```

- Answer?

Constructing an ALU - Building Blocks

- Next goal is to build an ALU (arithmetic logic unit) to perform addition, subtraction, and logical operations.
- Building blocks will be "gates", as shown in figure 4.8: AND gate, OR gate, inverter, multiplexor. (What's "below" these? Transistors acting as switches,

Slide 3

 as discussed very briefly earlier.)- A word about notation: We'll use the textbook's notation, which alas is different from what you used in CS 1323.

$$
\begin{array}{cc}
\text { CS 2321 } & \text { CS 1323 } \\
a \cdot b & a \wedge b \\
a+b & a \vee b \\
\bar{a} & a^{\prime}
\end{array}
$$

- How to use these to build ALU?

Constructing an ALU - and, or

- How to implement "black box" with inputs $a, b, o p$ (0 for and, 1 for or)? See figure 4.9.
We could then put 32 of these side by side for 32 -bit operands, no?

Slide 4

Constructing an ALU - Addition

- Now consider addition. Two bits in, one bit out? Not exactly, right? also need carry-in and carry-out bits. See figure 4.10.
- We could write out a table showing inputs/outputs. See figure 4.11.

Slide 5

- If we can build something to implement this, we can connect 32 of them to get
- Can we build a " 1 -bit adder" that behaves as described, using AND and OR gates and inverters?
- Carry-out bit is 1 exactly when at least two inputs are 1, right? How to write that in terms of AND, OR, NOT?

Slide $6 \quad$ And then we can build it; see figure 4.13

- Sum bit is a little more complicated, but doable.

Constructing an ALU - Subtraction

- What about subtraction? First we remember that $a-b$ is just $a+(-b)$, and then we remember how to compute $-b$ in two's complement notation.
- So, we can make an "adder" subtract by inverting one set of inputs and setting first carry-in bit to 1. (!)

Slide 7

Constructing an ALU - Summary

- Combining what we have so far, we get figure 4.16.

