CSCI 2321 March 1, 2004

Administrivia

o Reminder: Homework 4 due Wednesday.

o Reminder: Abelson lecture 4pm today, Chapman Auditorium. Other talks:

— “Amorphous computing” in Dr. Myers’s Al class tomorrow at 11:20am in
HAS 340.

Slide 1 — Cryptography at 3:30pm in HAS 228.

4 )

Minute Essay From Last Lecture

e Question: Suppose you are given the address of a 32-bit word in the memory
of a computer implementing the MIPS architecture. How can you tell whether
the 32 bits there are an integer, a single-precision floating point number, or
something else? (What are some of the other possibilities?)

Slide 2 o Answer?




CSCI 2321 March 1, 2004

4 )
Recap — What We've Done, What's Next

e We've talked about
— Defining the smallest steps the processor can take — instructions.
— What these smallest steps operate on — registers and memory elements.
— How to do arithmetic in terms of Boolean algebra.

Slide 3 e Next is to talk about how to make something that executes a sequence of
instructions — looking at a representative subset of the whole instruction set
to keep things manageable.

Sketch overall plan — figure 5.1.

Combinational Logic Blocks Versus State Elements

e We'll talk about two kinds of “functional units” (circuits with inputs, outputs),
combinational logic blocks and state elements.

o Combinational logic blocks (e.g., our ALU) have no internal state — outputs
depend only on inputs.

Slide 4 e State elements (e.g., registers, memory elements) do have internal/saved
state — outputs depend on inputs and internal state, internal state can be

changed.




CSCI 2321 March 1, 2004

4 )

Combinational Logic Blocks

e To review — CLB is a circuit that implements a boolean function or functions.

e In textbook’s view, “circuit” is a combination of AND and OR gates and
inverters. In a lower-level view, it's a combination of “switches”.

A “switch” here is something that allows current to flow / not flow between two
Slide 5 points, depending on whether its control input is 1 or 0. By connecting
switches in the right way (together with a “source of 1s” and a “source of 0s”),
we can build gates that work as described.

o When inputs to a CL block change, these changes ripple through the circuit,
changing which switches are open/closed. After a delay (how long depends
on how many switches are connected “in sequence”), outputs to block change
to reflect input changes.

e Examples include multiplexor (figure B4), ALU of chapter 4.

. J

State Elements

e Combinational logic is good and useful, but — we also need some way to
hold values in a stable way (for registers, memory, etc.).

e Simplest state element — unclocked set/reset latch (figure B12). When R
input is 1, sets () to 0; when S input is 1, sets () to 1.

Slide 6




CSCI 2321 March 1, 2004

4 )

State Elements, Continued

e What we really want, though, is something that will hold a value and also only
get updated when the intended new value is “stable”.
So, useful to have a “clock” (something that cycles back and forth between 0

and 1 at regular intervals) and only update “state elements” once per cycle.

Slide 7 ® S0, add a clock signal to set/reset latch to get “D latch” (figure B13). When
clock signal (C) is 1, latch is “open” and output changes to match input D.

State Elements, Continued

e |f we also want to be able to include state elements in a “feedback circuit”
(outputs feed back into inputs), though, we’ll need something more.

® So, add more logic to get “flip-flop” (figure B15):
While clock is 1, input is being “sampled” and stored in first latch, but can’t
Slide 8 affect output.

When clock goes to 0, stop sampling input and use sampled value to set

output.




CSCI 2321 March 1, 2004

State Elements, Continued

o More generally, a state element is a block with inputs and outputs (like CL
block), plus “internal state”.

e Outputs depend on inputs and internal state.
e Inputs include “clock”.
Slide 9

e Internal state is updated (at most) once per clock cycle — for convenience,
we'll say “when clock goes from 1 to 0”.
(“At most” is because we might decide to update / not update based on other
inputs.)

Combining CL Blocks and State Elements

o We’'ll typically build things from combinations of state elements and CL
blocks, as in figure B10 and figure B11.

o Notice how this works:
While clock is 1, values from state element #1 percolate through the CL block

Slide 10 to produce outputs.

When clock goes to 0, those outputs are used to set a new value for state
element #2.




CSCI 2321 March 1, 2004

e Sketch a combinational logic block with two inputs @ and b and an output
that's 1 when they’re equal and 0 otherwise.

Slide 11




