CSCI 2321 March 3, 2004

Administrivia

e None.

Slide 1
Minute Essay From Last Lecture
e Question: Sketch a combinational logic block with two inputs a and b and an
output that's 1 when they’re equal and 0 otherwise.

e Answer?

Slide 2

CSCI 2321 March 3, 2004

Combinational Logic Blocks and State Elements, Review

e Two types of “functional units” — CL blocks, which don’t have a notion of
saved/internal state, and state elements, which do.

e The idea will be to combine them, and a clock, in such a way that every clock
cycle:

Slide 3 — At the start of the cycle the outputs of the state elements are based on

their current values.

— These values “ripple” through the CL blocks, generating new inputs for the
state elements.

— At the end of the cycle, these inputs are used to set new values for the
state elements.

See figures B.10 and B.11.

Combinational Logic Blocks, Recap / A Bit More

e Combinational logic blocks are circuits that “compute” outputs as Boolean
functions of inputs.

® So, to design a CL block, it makes sense to first write down the function(s) to
compute. A typical approach is to get this into a “standard” form, often a big
Slide 4 OR whose terms are ANDs (“disjunctive normal form” — disjunction (OR) of
conjunctions (ANDs)). Then it's obvious how to turn this into gates and
inverters. “Programmable logic arrays” (PLAs) are a standard approach.

o More about this, and examples, in Appendix B.

CSCI 2321 March 3, 2004

State Elements, Recap / A Bit More

o We looked last time at simple state elements.

e Recall that the point is to build something that “holds a value” and allows it to
be set. This is why we need something like that feedback loop in the
“set/reset latch” circuit — so the circuit’s outputs (current state) depend not

only on its current inputs but also on its previous inputs.

Slide 5
e We also typically want to connect these in a way that current state might

connect to inputs that set next state — e.g., a counter. To make this work, we
introduce a clock, and design the state elements so they only get updated
once per “clock cycle”. (Yes, this is the “clock cycle” of chapter 2.)

(Aside: It’s possible to design processors without a clock — “asynchronous”
— but not how it’s typically done now.)

e As a more complicated example, consider designing a “register file”, as
shown in figures B.18, B.19, B.20.

Building a Processor

® The overall idea involves two parts:

— “Datapath” that stores values and does operations. Exactly what it does
depends on “control signals” (e.g., “operation” input to ALU from
chapter 4).

Slide 6 — “Control” that generates control signals.

e A possibly useful analogy — datapath is a puppet, control is the thing pulling
its strings.

CSCI 2321

Slide 7

Slide 8

March 3, 2004

_

e First we need a place to store instructions and a way to fetch them one at a

Building a Datapath

time and execute them. For that we need:

— Instruction memory (physically part of main memory and not processor,

but logically can include in datapath).

State element, right? What should values be? inputs? output?

— Program counter.

Also a state element, right? What should values be? inputs? output?

— Adder (to increment program counter).

CL block, right? what should inputs and outputs be?

e And then we connect these as shown in figure 5.5.

e Here’s what we talked about in chapters 3 and 4:

1.

2
3
4,
5
6

MIPS instruction set.

. Translating C to MIPS assembly language.

. Translating assembly language to 1s and Os.
Representing numbers (integers and reals) in binary.
. Computer arithmetic.

. Turning Boolean functions into circuits.

How well do you think you understand each of these?

o Reminder: Homework 4 due by 5pm today.

