
CSCI 2321 March 3, 2004

Slide 1

Administrivia

• None.

Slide 2

Minute Essay From Last Lecture

• Question: Sketch a combinational logic block with two inputs a and b and an

output that’s 1 when they’re equal and 0 otherwise.

• Answer?



CSCI 2321 March 3, 2004

Slide 3

Combinational Logic Blocks and State Elements, Review

• Two types of “functional units” — CL blocks, which don’t have a notion of

saved/internal state, and state elements, which do.

• The idea will be to combine them, and a clock, in such a way that every clock

cycle:

– At the start of the cycle the outputs of the state elements are based on

their current values.

– These values “ripple” through the CL blocks, generating new inputs for the

state elements.

– At the end of the cycle, these inputs are used to set new values for the

state elements.

See figures B.10 and B.11.

Slide 4

Combinational Logic Blocks, Recap / A Bit More

• Combinational logic blocks are circuits that “compute” outputs as Boolean

functions of inputs.

• So, to design a CL block, it makes sense to first write down the function(s) to

compute. A typical approach is to get this into a “standard” form, often a big

OR whose terms are ANDs (“disjunctive normal form” — disjunction (OR) of

conjunctions (ANDs)). Then it’s obvious how to turn this into gates and

inverters. “Programmable logic arrays” (PLAs) are a standard approach.

• More about this, and examples, in Appendix B.



CSCI 2321 March 3, 2004

Slide 5

State Elements, Recap / A Bit More

• We looked last time at simple state elements.

• Recall that the point is to build something that “holds a value” and allows it to

be set. This is why we need something like that feedback loop in the

“set/reset latch” circuit — so the circuit’s outputs (current state) depend not

only on its current inputs but also on its previous inputs.

• We also typically want to connect these in a way that current state might

connect to inputs that set next state — e.g., a counter. To make this work, we

introduce a clock, and design the state elements so they only get updated

once per “clock cycle”. (Yes, this is the “clock cycle” of chapter 2.)

(Aside: It’s possible to design processors without a clock — “asynchronous”

— but not how it’s typically done now.)

• As a more complicated example, consider designing a “register file”, as

shown in figures B.18, B.19, B.20.

Slide 6

Building a Processor

• The overall idea involves two parts:

– “Datapath” that stores values and does operations. Exactly what it does

depends on “control signals” (e.g., “operation” input to ALU from

chapter 4).

– “Control” that generates control signals.

• A possibly useful analogy — datapath is a puppet, control is the thing pulling

its strings.



CSCI 2321 March 3, 2004

Slide 7

Building a Datapath

• First we need a place to store instructions and a way to fetch them one at a

time and execute them. For that we need:

– Instruction memory (physically part of main memory and not processor,

but logically can include in datapath).

State element, right? What should values be? inputs? output?

– Program counter.

Also a state element, right? What should values be? inputs? output?

– Adder (to increment program counter).

CL block, right? what should inputs and outputs be?

• And then we connect these as shown in figure 5.5.

Slide 8

Minute Essay

• Here’s what we talked about in chapters 3 and 4:

1. MIPS instruction set.

2. Translating C to MIPS assembly language.

3. Translating assembly language to 1s and 0s.

4. Representing numbers (integers and reals) in binary.

5. Computer arithmetic.

6. Turning Boolean functions into circuits.

How well do you think you understand each of these?

• Reminder: Homework 4 due by 5pm today.


