
CSCI 2321 March 5, 2004

Slide 1

Administrivia

• Review sheet for midterm on Web. We will use Monday’s class for a review.

Slide 2

Minute Essay From Last Lecture

• Question: Here’s what we talked about in chapters 3 and 4:

1. MIPS instruction set.

2. Translating C to MIPS assembly language.

3. Translating assembly language to 1s and 0s.

4. Representing numbers (integers and reals) in binary.

5. Computer arithmetic.

6. Turning Boolean functions into circuits.

How well do you think you understand each of these?

• Answers? Let’s take a poll.

CSCI 2321 March 5, 2004

Slide 3

Building a Datapath, Recap/Review

• What we’re doing is figuring out what “functional units” we need to implement

a representative subset of MIPS instructions.

• Last time we talked about what’s needed just to store the program and step

through it — instruction memory, program counter.

Slide 4

Datapath for R-format Instructions

• What do we need in order to execute R-format instructions (add, sub, slt,

etc.)? E.g., add $t0, $t1, $t2.

We need to be able to read values for two registers, do arithmetic/logical

operation, write a value for a register.

• Functional units we need:

– “Register file”, as discussed last time. See figure B.18.

– ALU. What are inputs, outputs?

Connect them up as in figure 5.7.

• Trace through example — add $t0, $t1, $t2.

CSCI 2321 March 5, 2004

Slide 5

Datapath for Load/Store Instructions

• What do we need in order to execute lw, sw? E.g., lw $t0, 4($t1).

What we have to do here is

– Compute a memory address — by reading contents of a register, getting

offset from instructions, sign-extending offset, and adding.

– For lw, read contents of this memory location and put in register.

– For sw, store contents of register in this memory location.

Slide 6

Datapath for Load/Store Instructions, Continued

• Functional units we need:

– Register file and ALU as before.

– “Sign-extension unit” — CL block, right? inputs and output? see figure 5.8.

– “Data memory” — state element, right? inputs and outputs?

Connect them up as in figure 5.9.

• Trace through examples:

lw $t1, 4($s1)

sw $t1, -4($s1)

CSCI 2321 March 5, 2004

Slide 7

Datapath for Control-Flow Instructions

• What do we need in order to execute beq, j? E.g., beq $t0, $t1,

L1 or j L2.

• For j, what we have to do is replace last 28 bits of PC with 26 bits from

instruction. Mostly a matter of routing things, so we’ll do this later.

• For beq, what we have to do is

– Compute “branch address” by taking (PC+4) and adding offset from

instruction, sign-extended and shifted.

– Compute difference between registers; use “is it zero?” bit to decide

whether to change PC.

Slide 8

Datapath for Control-Flow Instructions, Continued

• Functional units we need:

– Something to compute PC + 4.

– Sign extender, ALU, and register file as before.

– Something to shift offset from instruction 2 bits left.

– Something to calculate PC + 4 + offset. (Why can’t we do this with the

ALU?)

Connect them up as in figure 5.10.

• Trace though example — here: beq $t1, $t2, here.

CSCI 2321 March 5, 2004

Slide 9

Minute Essay

• Is there anything you particularly want me to review Monday?

