
CSCI 2321 March 24, 2004

Slide 1

Administrivia

• Notes and sample programs from Friday before break on Web.

• Midterm grades mailed earlier today, including letter-grade estimate. Things

to note if you’re not happy with yours:

– In computing the final grade, I’ll drop the lowest quiz score. I didn’t do that

here.

– Letter grades are conservative estimates.

– There are still lots of points in play, and there will likely be a possibility of

extra-credit points at the end of the term.

Slide 2

Building a Datapath, Review

• What we’re doing is figuring out what “functional units” we need to implement

a representative subset of MIPS instructions.

• Before the midterm, we talked about what’s needed to store the program and

step through it, and then what’s needed for most of the instructions we want

to implement.

• Recall also that we have two kinds of functional units — CL blocks and state

elements.



CSCI 2321 March 24, 2004

Slide 3

Building a Datapath — Storing and Running Programs

• What we need to do: Store programs, fetch instructions one at a time in

sequence.

• Datapath elements: instruction memory, program counter, adder.

Slide 4

Building a Datapath — R-format Instructions

• What we need to do: read contents of two registers, combine, store result in

another register.

• Datapath elements: register file, ALU.



CSCI 2321 March 24, 2004

Slide 5

Building a Datapath — Load/Store Instructions

• What we need to do: read address from register, add offset from instruction,

transfer info from register to data memory or vice versa.

• Datapath elements: register file, ALU, sign-extension unit.

Slide 6

Building a Datapath — Control-Flow Instructions

• What we need to do: For conditional branches, compute branch address from

PC+4 and offset in instruction, subtract two registers and see if result is zero.

For unconditional jumps, just replace PC with address from instruction.

• Datapath elements: register file, ALU, sign-extension unit, unit to do “left shift

2 bits”(really just routing), adder for PC.

(Why can’t we just use the ALU to compute PC+4?)

• Connect them up as in igure 5.10.



CSCI 2321 March 24, 2004

Slide 7

A Little More About Branches

• We’ve oversimplified a little how branches actually work: Because of

pipelining (to be discussed later), branches are “delayed” — instruction after

branch is always executed.

• For simplicity, we’ll show how to implement nondelayed branches.

• Similar caveat applies to what we say about load instructions — “delayed” in

that value isn’t available for next instruction.

• (Why didn’t we mention this in writing MIPS-assembler programs? Assembler

and simulator implement a “virtual machine” with nondelayed branches and

loads. Compare with assembly-language version of code produced by

compiler.)

Slide 8

Preview of Next Topic — Building a Simple “Control”

• Goal of next section — finish designing a simple implementation of

representative group of instructions.

• Simplify by requiring that all instructions must be completed in one clock

cycle. Not optimally efficient, but simpler.

• Basic idea will be to combine datapath elements sketched so far, figure out

what “control signals” we need, then figure out how to generate them — using

as input the current state of the machine and the instruction being executed.

(E.g., the ALU needs an input telling it which operation to perform — “add” for

loads/stores/branches, something based on instruction itself for R-format

instructions, etc.)



CSCI 2321 March 24, 2004

Slide 9

Minute Essay

• An easy one: How was your spring break?


