
CSCI 2321 April 14, 2004

Slide 1

Administrivia

• None?

Slide 2

Minute Essay From Last Lecture

• Question: Sketch a finite state machine for a slightly improved traffic signal:

– Inputs are sensors as described plus a “flash both directions” input.

– Outputs are “N/S green” and “E/W green” as described, plus “N/S flash”

and “E/W flash”.

– Operation should be as before, except that whenever the “flash both

directions” input is on, the two “flash” outputs should be 1 and the two

“green” outputs should be 0.

• Answer?



CSCI 2321 April 14, 2004

Slide 3

Generating Control Signals with a FSM, Recap

• First we draw a FSM that represents our overall strategy (5 steps, different

steps for different instructions) — figure 5.42.

• Then we implement this as in figure B.29 / figure 5.43.

• Then we use this as the “Control” CL block in figure 5.33. (Actually it’s not

completely a CL block any more, right?)

Slide 4

Generating Control Signals with Microprogramming

• The FSM approach works okay if the number of states is reasonable. If we

had more instructions, though, the graphical representation could get out of

control, no?

• Another approach is to treat generating control signals as a programming

problem, sort of — “microprogramming”.

Can think of this as text representation of FSM, or as an “assembly language

below assembly language”.

• Basic idea is to define “microinstructions” (groups of control signals for the

datapath) and use them to build a text representation of the FSM.



CSCI 2321 April 14, 2004

Slide 5

Microinstructions

• Format for microinstructions (more details in figure 5.45):

– Label.

– ALU control (ALUOp). Possible values: Add, Sub, Func code.

– Source 1, Source 2 — ALU inputs. One possible value for each input to

ALU-input multiplexors.

– Register control — what to do with register file. Possible values Read,

Write ALU, Write MDR. Allows us to generate “do we write” flag

and input to multiplexor.

– Memory — what to do with memory. Possible values Read PC, Read

ALU, Write ALU. Allows us to generate control signals for memory

and IR.

– Continued on next slide . . .

Slide 6

Microinstructions, Continued

• Format for microinstructions, continued:

– PC Write control — whether/how to change PC. Possible values ALU,

ALUOut-cond, Jump address. Allows us to generate control

signals for changing PC.

– Sequencing — how to choose next microinstruction. Possible values Seq,

Fetch, Dispatch n.



CSCI 2321 April 14, 2004

Slide 7

Microinstructions — Sequencing

• The choices we want are:

– Go to next microinstruction.

– Go back to start (i.e., start execution of next MIPS instruction).

– Go somewhere else. For this, the idea is to have a “dispatch table” that

maps control-unit inputs to labels. Can have more than one of these.

Slide 8

Microprogramming for Our Multiple-Cycle
Implementation

• Microprogram for our subset implementation has just 10 instructions (one for

each state of FSM). See figure 5.46.

• How to turn this into hardware? several ways . . .



CSCI 2321 April 14, 2004

Slide 9

Hardware for Microprogramming

• One approach is to treat the microprogram as a text representation of a FSM

and implement the same way. (Translating truth tables into gates or other

hardware is completely mechanical, so there are tools to automate it.)

• Another approach — “ROM” (read-only memory) and sequencer. Idea is to:

– “Assemble” microinstructions into binary form (e.g., into needed control

signals) and store in a small read-only memory.

– Use counter to store address (in this ROM) of next instruction.

– Update counter using adder and some control logic (driven by output of

main control unit).

See figure 5.47.

Probably a better choice if many states, especially if next state is often Seq.

(E.g., consider multiply, divide, floating-point instructions.)

Slide 10

Minute Essay

• Was Homework 6 helpful, tedious, both, neither, . . . ?

• Reminder: Homework 6 due today.


