
CSCI 2321 April 19, 2004

Slide 1

Administrivia

• Homework 7 on Web. Due next Monday.

• Reminder: Quiz 6 Wednesday.

Slide 2

Generating Control Signals for a Multi-Cycle
Implementation, Recap

• One approach — draw finite state machine, turn into tables mapping inputs

(six bits of opcode) and current state to outputs (control signals) and next

state. Then convert to big CL block. Reasonable if not many states.

• Another approach — “microprogramming”, basically a text representation of

the FSM. Represent each microinstruction in binary (encoding control signals

and representation of next state), store in ROM. Better if many states.

• More details, for those who are interested, in Appendix C. (In particular, the

explanation of dispatch tables and “sequencers” seems clearer than in

chapter 5.)



CSCI 2321 April 19, 2004

Slide 3

Exceptions and Interrupts

• Up to now we’ve talked only about running a single program in which nothing

ever “goes wrong”. But real systems must also cope with errors, e.g.:

– Arithmetic overflow.

– Undefined instruction. (How could this happen?)

– Hardware problems.

• A useful approach — transfer control to some part of operating system and let

it take action (try to recover, terminate program, etc.).

• Same approach can be used for other events whose timing is unpredictable,

e.g.:

– I/O device requests service/attention.

– User program requests operating-system service.

• Can classify such events as internal/external, exceptions/interrupts, but basic

idea is the same.

Slide 4

Exceptions and Our Multi-Cycle Implementation

• As examples, consider two kinds of exceptions possible with our

implementation — arithmetic overflow, undefined instruction.

• What do we want to happen?

– Save information about what happened — address of instruction that

caused error, which kind of exception. Save each in a special-purpose

register.

– Transfer control to fixed address (presumably containing part of operating

system), which can then take appropriate action. (Could that include

continuing the program that caused the exception?)



CSCI 2321 April 19, 2004

Slide 5

Datapath Additions for Exceptions

• What do we need to add to make it possible to deal with exceptions as

described?

– Someplace to save address of problem instruction, type of exception —

EPC and Cause registers. Note that we don’t want to write to them every

cycle. Note also that value for EPC isn’t current value of PC!

– Some way to set PC to address of “interrupt handler”.

• Result is figure 5.48 (which leaves out routing Overflow output of ALU to

main “control” block).

Slide 6

Control Signals for Exceptions

• New control signals EPCWrite, CauseWrite. Everything else can be

done with existing signals.



CSCI 2321 April 19, 2004

Slide 7

Exceptions and our FSM

• Two new states for FSM, one for each type of exception. How/where to add

these? See figure 5.50.

(Actually, figure 5.50 is not quite right — we need a 1-bit register to save

Overflow.)

Slide 8

Minute Essay

• Write a sequence of MIPS instructions that would be guaranteed to cause an

arithmetic overflow exception.

• Write a sequence of MIPS instructions that would be guaranteed to cause an

“undefined instruction” exception.


