
CSCI 2321 April 21, 2004

Slide 1

Administrivia

• Most/all remaining lectures will likely be “executive summaries”. There will be

assigned reading, but you should read for the big picture / key ideas and

skim/skip details.

Slide 2

Minute Essay From Last Lecture

• Questions:

– Write a sequence of MIPS instructions that would be guaranteed to cause

an arithmetic overflow exception.

– Write a sequence of MIPS instructions that would be guaranteed to cause

an “undefined instruction” exception.

• Answers?



CSCI 2321 April 21, 2004

Slide 3

Pipelining — Basic Idea

• Modeled after assembly line; many real-world analogies possible. Textbook

describes a laundry “assembly line”, with stages corresponding to washing,

drying, folding, and putting away.

• Could base a pipelined implementation of MIPS on the steps we defined for

the multi-cycle implementation, with one pipeline stage per step, as in

figure 6.3.

Slide 4

Pipelining Complications — “Structural Hazards”

• Idea is that two things we want to do at the same time conflict — e.g., read

instruction from memory and read data from memory.

• Only solution is to avoid. For MIPS, we could go back to separate instruction

and data memories.



CSCI 2321 April 21, 2004

Slide 5

Pipelining Complications — “Control Hazards”

• Idea is that we need to make a decision but can’t yet — e.g., we can’t know

what instruction should logically follow a conditional branch until we have the

branch partly executed.

• Several possible solutions:

– Stall — just wait until we can be sure.

– Predict — make a guess, and if we guess wrong undo/redo.

– Use delayed branches — always execute instruction after conditional

branch, then jump / don’t jump. (This is what MIPS does.)

Slide 6

Pipelining Complications — “Data Hazards”

• Idea is that we need data computed by one instruction before it would

normally be available — e.g., two successive R-type instructions, or a load

followed by an R-type instruction.

• Several possible solutions:

– Stall — just wait until data is available. (Probably not a good solution.)

– Add hardware for “forwarding” — special hardware to route results to next

instruction in addition to regular destination. May or may not be possible.

– Use delayed loads — don’t allow instruction after a “load” to use the result.

(This is what original MIPS did.)



CSCI 2321 April 21, 2004

Slide 7

Pipelining and MIPS — Sketch

• Basic idea shown in figure 6.12. Getting all details right — avoiding control

and data hazards, flushing pipeline on exceptions — is nontrivial.

Slide 8

Pipelining — Summary

• Can improve instruction throughput, but individual instructions don’t execute

faster.

• Works better if instructions are “regular” and can be broken into equal-time

steps.

• Nontrivial to get right!



CSCI 2321 April 21, 2004

Slide 9

Minute Essay

• None — quiz.


