
CSCI 2321 (Principles of Computer Design), Spring 2013

Homework 3

Credit: 30 points.

1 Reading

Be sure you have read all assigned sections of chapter 2.

2 Problems

Do the following problems. You may write out your answers by hand or using a word processor or
other program, but please submit hard copy, either in class or in my mailbox in the department
office.

1. (10 points) Do problems 2.19.1 and 2.19.3 from the textbook. (For problem 2.19.1, just give
MIPS code; no need to count instructions.) Use the following C code.

int fib(int n){

if (n==0)

return 0;

else if (n==1)

return 1;

else

return fib(n-1) + fib(n-2);

}

Clarification: The conventions for calling a recursive function are somewhat unclear — the
example in chapter 2 differs a bit from a similar example in appendix B. Use whichever makes
more sense to you.

Clarification: For problem 2.19.3, show what is on the stack just after the first call to function
fib finishes its “opening linkage” (saving registers on the stack).

2. (5 points) Do problem 2.27.4 from the textbook. Do the problem twice, once for each of the
following sequences of MIPS instructions (where the base-16 number on the left represents
the address of the instruction).

0x00400000 beq $s0, $0, FAR

...

0x00403100 FAR: addi $s0, $s0, 1

and

0x00000100 j AWAY

...

0x04000000 AWAY: addi $s0, $s0, 1

1

CSCI 2321 Homework 3 Spring 2013

3. (10 points) Do problem 2.31.1 from the textbook (producing something like the answer to
the example on pp. 143ff — i.e., show the result of everything the linker must do). Use the
text and data sizes from the problem and the object-file information in the tables below.

Clarification: If you are puzzled by the lui and ori instructions: These two instructions are
often used together to load a 32-bit constant (example on p. 128 of the textbook). Very likely
the intent here is to load the address corresponding to X into register $a0, since The MIPS
assembler transforms the pseudoinstruction la (“load address”) into just such instructions.

Clarification: In the referenced example there is a discussion of how to “patch” the lw and
sw instructions. I’m quite skeptical about the calculation of the offset/displacement for the
sw — I believe that the result is correct, since if you sign-extend 0x8020 and add it to the
value in $gp you do get the address corresponding to Y. The intermediate value (negative
0x7980) seems wrong, though. The simplest way to approach this calculation may be just to
guess (and check) a value that when added to the value in $gp gives the desired address.

Table for procedure A:

Text Segment Address Instruction

0 lui $at, 0

4 ori $a0, $at, 0

.

0x84 jr $ra

.

Data Segment Address Label

0 (X)

.

Relocation Info Address Instruction Type Dependency

0 lui X

4 ori X

Symbol Address Symbol

. . . X

Table for procedure B:

2

CSCI 2321 Homework 3 Spring 2013

Text Segment Address Instruction

0 sw $a0, 0($gp)

4 jmp 0

.

0x180 jal 0

.

Data Segment Address Label

0 (Y)

.

Relocation Info Address Instruction Type Dependency

0 sw Y

4 jmp FOO

0x180 jal A

Symbol Address Symbol

. . . Y

0x180 FOO

. . . A

4. (Optional: Up to 5 extra-credit points) Do problems 2.28.2, 2.28.3, and 2.28.4 from the
textbook. Use the following MIPS instructions for problems 2.28.2 and 2.28.3, and the table
below for problem 2.28.4. (Assume here that R2, R3 are registers. No, I don’t know why the
textbook authors didn’t follow the usual convention . . .)

try: MOV R3, R4

LL R2, 0(R2)

ADDI R2, R2, 1

SC R3, 0(R1)

BEQZ R3, try

MOV R4, R2

Table for 2.28.4:

Processor 1 Mem Processor 2

Processor 1 Processor 2 Cycle $t0 $t1 ($s1) $t0 $t1

0 1 2 99 30 40

ll $t1, 0($s1) 1

ll $t1, 0($s1) 2

addi $t1, $t1, 1 3

sc $t1, 0($s1) 4

sc $t1, 0($s1) 5

3

CSCI 2321 Homework 3 Spring 2013

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.

trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 2321 homework 3”). You can develop your programs on
any system that provides the needed functionality, but I will test them using the SPIM simulator
on one of the department’s Linux machines, so you should probably make sure they work in that
environment before turning them in.

1. (5 points) Add code to your solution to problem 2.18.2 (from Homework 2) to make it
a complete program that prompts for values for a and b and prints the ending value of a.
Programs echo.s and echoint.s on the sample programs page show how to input and output
text and integer values.

2. (Optional: Up to 10 extra-credit points.) First do problem 2.23 from the textbook, using the
condition that the input ASCII string is meant to represent a positive hexadecimal integer
(so for example “1234” and “5A” are valid inputs, but “hello” is not, nor is “-1”). Then add
code to the resulting function so that the result is a complete MIPS program that prompts
for an input string, converts it to an integer using your function, and prints the result (in
base 10). Programs echo.s and echoint.s on the sample programs page show how to input
and output text and integer values.

4

