
CSCI 2321 January 28, 2013

Slide 1

Administrivia

• First homework will be on the Web soon.

Slide 2

Minute Essay From Last Lecture

• People mentioned many things, from obviously electronic gadgets to

appliances to cars . . .



CSCI 2321 January 28, 2013

Slide 3

A Little About Integrated Circuits

• Conceptual view of hardware:

– Transistor — on/off switch controlled by electrical current.

– Combine/connect a lot of transistors to get circuit that does interesting

things (e.g., addition).

– Put a bunch of circuits together to get a chip / integrated circuit (IC). If lots

of transistors, VLSI chip.

Slide 4

A Little About Integrated Circuits, Continued

• Manufacturing process starts with a thin flat piece of silicon, adds metal and

other stuff to make wires, insulators, transistors, etc.

• Of course, this is all automated! Low-level chip designers use CAD-type tools,

which save designs in a standard format, which the chip designers

simulate/test with other software, and then send off to be fabricated.

• Typically make many chips on a wafer, discard those with defects, bond each

good one to something larger with pins to allow connections to other parts of

computer.



CSCI 2321 January 28, 2013

Slide 5

Parallelism

• Executive-level definition of “parallelism” might be “doing more than one thing

at a time”. In that sense, it’s been used in processors for a very long time, via

pipelining and (in high-performance processors) vector processing.

• For a (relatively!) long time, hardware designers were able to make single

processors faster using these and other techniques (e.g., reducing sizes of

things). In the mid-2000s, however, they ran out of ways to do that. But they

could still put larger numbers of transistors on the chip. How to use that to get

better performance?

Slide 6

Parallelism, Continued

• All that time there were people saying we would hit a limit on single-processor

performance, and the only answer would be paralleism at a higher level —

executing multiple instruction streams at the same time.

• So . . . use all those transistors to put multiple cores (processing elements) on

a chip!

• Why wasn’t this done even earlier? because alas the “magic parallelizing

compiler” —- the one that would magically turn “sequential” programs into

“parallel” versions — has proved elusive, and (re)training programmers is not

trivial.



CSCI 2321 January 28, 2013

Slide 7

Defining Performance

• What does it mean to say that computer A “has better performance than”

computer B?

• Really — “it depends”. Some answers:

– Computer A has better response time / smaller execution time.

– Computer A has higher throughput.

• We’ll use execution time, and say

PerformanceA

PerformanceB

= n

exactly when

Execution timeB

Execution timeA

= n

Slide 8

Measuring Performance

• If we use execution time as criterion, how to measure?

• Wall-clock time seems fairest, since it includes

– Time for CPU to execute instructions.

– Any waiting for memory access.

– Any waiting for I/O.

– Any waiting for operating system.

• Is that easy to measure reliably / repeatably?



CSCI 2321 January 28, 2013

Slide 9

Measuring Performance, Continued

• No — to get repeatable measure of wall clock time, need an otherwise

unused system.

• So instead we could use “CPU performance” — amount of time CPU needs to

run program. Easier to measure, more consistent.

• Or we could try “clock speed”. Can define in terms of “clock period / cycle” or

“clock rate” (inverse of clock period).

• Example — for 1GHz processor, what’s its clock cycle?

Slide 10

How These Metrics Relate

• CPU execution time for program X is given by

CPU cycles × clock cycle

• How would you write that using clock rate instead of clock cycle?

• How would you write it if you know number of instructions and (average)

number of cycles per instruction?

• What if you can define different classes of instructions, each with a different

number of cycles per instruction?

• So, to double performance for a program, is it enough to double the clock

rate?



CSCI 2321 January 28, 2013

Slide 11

How These Metrics Relate, Continued

• Not necessarily —

– Could number of instructions change?

– Could cycles per instruction change?

• Well, but at least it’s better to have fewer instructions?

Slide 12

How These Metrics Relate, Continued

• Also not necessarily — e. g., if you replace instructions that take a few cycles

each with a few that take a lot of cycles.



CSCI 2321 January 28, 2013

Slide 13

Evaluating / Comparing Performance

• Trickier than it sounds to come up with one number that means something.

• Approaches include

– Use the actual workload, on the actual hardware platform(s), and compare

times.

– Put together a representative simulated workload — “benchmark”; run and

compare times.

– Compare code size.

– Compare number of instructions per second (“MIPS” or “MFLOPS”).

• Alas, all of these are flawed in some way.

(Paraphrasing someone whose name I don’t remember, “peak MIPS is just

the number you can’t go any faster than.”)

Slide 14

Minute Essay

• None — sign in.


