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Administrivia

• Homework 1 will be on the Web later today (I will send mail). Due a week

from today.
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One More Thing About Performance — Amdahl’s Law

• Parallel-computing version: Can define “speedup” gained by using P

processors as ratio of execution time using 1 processor to execution time

using P processors. (So, in a perfect world it would be P ).

• But most “real programs” have some parts that have to be done sequentially.

Gene Amdahl (principal architect of early IBM mainframe(s)) argued that this

limits speedup — “Amdahl’s Law”:

If γ is the “serial fraction”, speedup on P processors is (at best — this

ignores overhead)

S(P ) =
1

γ + 1−γ

P

and as P increase, this approaches 1

γ
— upper bound on speedup.

• Textbook points out that this is more broadly applicable!
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“Architecture” as Interface Definition

• From software perspective, “architecture” defines lowest-level building blocks

— what operations are possible, what kinds of operands, binary data formats,

etc.

• From hardware perspective, “architecture” is a specification — designers

must build something that behaves the way the specification says.
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Terminology Recap/Review

• Repertoire of primitive operations processor can carry out — “instruction set”.

• Sequence of instructions encoded as binary — “object code” or “machine

language”.

• Encoded in symbolic form — “assembly language”.



CSCI 2321 January 30, 2013

Slide 5

Architecture — Key Abstractions

• Memory: Long long list of binary “numbers”, encoding all data (including

programs), each with “address” and “contents”.

When running a program, program itself is in memory; so is its data.

• Instructions: Primitive operations processor can perform.

• Fetch/execute cycle: What the processor does to execute a program —

repeatedly get next instruction (from memory, location defined by “program

counter”), increment program counter, execute instruction.

• Registers: Fast-access work space for processor, typically divided into

“special-purpose” (e.g., program counter), “general-purpose” (integer and

floating-point).
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Design Goals for Instruction Set

• From software perspective — expressivity.

• From hardware perspective — good performance, low cost.
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Why Study MIPS Architecture?

• Goal is not to become assembly-language programmers, but to understand

how things work at this level. Once you understand basic principles, learning

another assembly language is easier.

• MIPS architecture is simple but representative.

Aside: SPIM simulator will let you experiment (commands spim and

xspim).
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A Bit About Assembly Language Syntax

• Syntax for high-level languages can be complex. Allows for good expressivity,

but translation into processor instructions is complicated.

• Syntax for assembly language, in contrast, is very simple. Less expressivity

but much easier to translate into (binary form of) instructions.
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Arithmetic Instructions — Addition

• Instruction for integer addition (in assembly-language form):

add a, b, c

Adds b and c giving a.

(Notice the format — symbolic name, operands.)

• Is this expressive enough?

• Should we have more instructions (with different numbers of operands, e.g.)?

“Design Principle 1: Simplicity favors regularity.”

Easier to build simple hardware if ISA is “regular” — e.g., all arithmetic

instructions have exactly three operands.

• sub (subtraction) is similar. Multiplication and division are more complicated,

so punt for now.

• What are the operands? Registers.
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Registers

• Access to main memory is slow compared to processor speed, so it’s useful

to have a within-the-chip memory — “registers”.

• MIPS architecture defines 32 “general-purpose” registers, each 32 bits.

• Would more be better?

“Design Principle 2: Smaller is faster.”

• In machine language, reference by number.

• In assembly language, useful to adopt conventions for which registers to use

for what, use symbolic names indicating usage.

E.g., refer to registers 8 through 15 as $t0 through $t7.
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Example

• Suppose we have this in C

f = (g + h) - (i + j)

• What instructions should compiler produce? Assume we’re using $s0 for f,

$s1 for g, $s2 for h, $s3 for i, $s4 for j.

Slide 12

Memory, Revisited

• Usually we think of memory as big 1D array of 8-bit “bytes”, each with

address (index into array) and contents (value of array element).

• Often we operate on elements in groups of 4 — 32-bit “word”.

• MIPS is a “load/store” architecture, meaning access to memory is limited to

copying data between memory and registers. Alternatives include arithmetic

instructions to operate on memory directly.

(How would that be better? worse?)
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Memory-Access Instructions — Load

• Goal is to get one 32-bit word from memory and put in a register.

• How to specify location in memory? Seems most useful to have address in a

register. For a little more flexibility, specify address in terms of “base” and

“displacement”.

lw r, d(b)

Address specified by contents of register b plus (constant) d. Loads word

into register r.

• sw (“store word”) instruction is similar.
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Example

• Suppose we have this in C

g = h + a[8];

• What instructions should compiler produce? Assume we’re using $s3 for

starting (“base”) address of a, $s2 for h, $s1 for g.
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Minute Essay

• Suppose for a given program you have

Instructions Avg cycles/instr Cycle time

Machine X 1 million 1.5 1 ns

Machine Y 1 million 2 0.5 ns

(1 second = 109 ns)

Which machine is faster? by how much? (e.g., “X is twice as fast as Y”.)
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Minute Essay Answer

• time for X = 106
× 1.5 × 10−9 = 1.5 × 10−3

time for Y = 106
× 2 × 0.5 × 10−9 = 10−3

so Y is 1.5 times as fast as X


