
CSCI 2321 January 30, 2013

Slide 1

Administrivia

• Homework 1 will be on the Web later today (I will send mail). Due a week

from today.

Slide 2

One More Thing About Performance — Amdahl’s Law

• Parallel-computing version: Can define “speedup” gained by using P

processors as ratio of execution time using 1 processor to execution time

using P processors. (So, in a perfect world it would be P).

• But most “real programs” have some parts that have to be done sequentially.

Gene Amdahl (principal architect of early IBM mainframe(s)) argued that this

limits speedup — “Amdahl’s Law”:

If γ is the “serial fraction”, speedup on P processors is (at best — this

ignores overhead)

S(P) =
1

γ + 1−γ

P

and as P increase, this approaches 1

γ
— upper bound on speedup.

• Textbook points out that this is more broadly applicable!

CSCI 2321 January 30, 2013

Slide 3

“Architecture” as Interface Definition

• From software perspective, “architecture” defines lowest-level building blocks

— what operations are possible, what kinds of operands, binary data formats,

etc.

• From hardware perspective, “architecture” is a specification — designers

must build something that behaves the way the specification says.

Slide 4

Terminology Recap/Review

• Repertoire of primitive operations processor can carry out — “instruction set”.

• Sequence of instructions encoded as binary — “object code” or “machine

language”.

• Encoded in symbolic form — “assembly language”.

CSCI 2321 January 30, 2013

Slide 5

Architecture — Key Abstractions

• Memory: Long long list of binary “numbers”, encoding all data (including

programs), each with “address” and “contents”.

When running a program, program itself is in memory; so is its data.

• Instructions: Primitive operations processor can perform.

• Fetch/execute cycle: What the processor does to execute a program —

repeatedly get next instruction (from memory, location defined by “program

counter”), increment program counter, execute instruction.

• Registers: Fast-access work space for processor, typically divided into

“special-purpose” (e.g., program counter), “general-purpose” (integer and

floating-point).

Slide 6

Design Goals for Instruction Set

• From software perspective — expressivity.

• From hardware perspective — good performance, low cost.

CSCI 2321 January 30, 2013

Slide 7

Why Study MIPS Architecture?

• Goal is not to become assembly-language programmers, but to understand

how things work at this level. Once you understand basic principles, learning

another assembly language is easier.

• MIPS architecture is simple but representative.

Aside: SPIM simulator will let you experiment (commands spim and

xspim).

Slide 8

A Bit About Assembly Language Syntax

• Syntax for high-level languages can be complex. Allows for good expressivity,

but translation into processor instructions is complicated.

• Syntax for assembly language, in contrast, is very simple. Less expressivity

but much easier to translate into (binary form of) instructions.

CSCI 2321 January 30, 2013

Slide 9

Arithmetic Instructions — Addition

• Instruction for integer addition (in assembly-language form):

add a, b, c

Adds b and c giving a.

(Notice the format — symbolic name, operands.)

• Is this expressive enough?

• Should we have more instructions (with different numbers of operands, e.g.)?

“Design Principle 1: Simplicity favors regularity.”

Easier to build simple hardware if ISA is “regular” — e.g., all arithmetic

instructions have exactly three operands.

• sub (subtraction) is similar. Multiplication and division are more complicated,

so punt for now.

• What are the operands? Registers.

Slide 10

Registers

• Access to main memory is slow compared to processor speed, so it’s useful

to have a within-the-chip memory — “registers”.

• MIPS architecture defines 32 “general-purpose” registers, each 32 bits.

• Would more be better?

“Design Principle 2: Smaller is faster.”

• In machine language, reference by number.

• In assembly language, useful to adopt conventions for which registers to use

for what, use symbolic names indicating usage.

E.g., refer to registers 8 through 15 as $t0 through $t7.

CSCI 2321 January 30, 2013

Slide 11

Example

• Suppose we have this in C

f = (g + h) - (i + j)

• What instructions should compiler produce? Assume we’re using $s0 for f,

$s1 for g, $s2 for h, $s3 for i, $s4 for j.

Slide 12

Memory, Revisited

• Usually we think of memory as big 1D array of 8-bit “bytes”, each with

address (index into array) and contents (value of array element).

• Often we operate on elements in groups of 4 — 32-bit “word”.

• MIPS is a “load/store” architecture, meaning access to memory is limited to

copying data between memory and registers. Alternatives include arithmetic

instructions to operate on memory directly.

(How would that be better? worse?)

CSCI 2321 January 30, 2013

Slide 13

Memory-Access Instructions — Load

• Goal is to get one 32-bit word from memory and put in a register.

• How to specify location in memory? Seems most useful to have address in a

register. For a little more flexibility, specify address in terms of “base” and

“displacement”.

lw r, d(b)

Address specified by contents of register b plus (constant) d. Loads word

into register r.

• sw (“store word”) instruction is similar.

Slide 14

Example

• Suppose we have this in C

g = h + a[8];

• What instructions should compiler produce? Assume we’re using $s3 for

starting (“base”) address of a, $s2 for h, $s1 for g.

CSCI 2321 January 30, 2013

Slide 15

Minute Essay

• Suppose for a given program you have

Instructions Avg cycles/instr Cycle time

Machine X 1 million 1.5 1 ns

Machine Y 1 million 2 0.5 ns

(1 second = 109 ns)

Which machine is faster? by how much? (e.g., “X is twice as fast as Y”.)

Slide 16

Minute Essay Answer

• time for X = 106
× 1.5 × 10−9 = 1.5 × 10−3

time for Y = 106
× 2 × 0.5 × 10−9 = 10−3

so Y is 1.5 times as fast as X

