
CSCI 2321 February 1, 2013

Slide 1

Administrivia

• (Review minute essay from last time.)

• Homework 1 revised slightly to ask you to show at least some work. Could

use minute essay from last time as a model of how much to show.

• Quiz 1 next Friday. In class, about ten minutes, open book/notes. More about

possible topics next week.

Slide 2

High-Level Languages Versus Assembly Language

• In a high-level language you work with “variables” — conceptually, names for

memory locations. You can do arithmetic on them, copy them, etc.

• In machine/assembly language, what you can do may be more restricted —

e.g., in MIPS architecture, you must load data into a register before doing

arithmetic).

• The compiler’s job is to translate from the somewhat abstract HLL view to

machine language. To do this, normally associate variables with registers —

load data from memory into registers, calculate, store it back. A “good”

compiler tries to minimize loads/stores.



CSCI 2321 February 1, 2013

Slide 3

Load/Store Example

• Suppose we have this in C

a[12] = h + a[8];

• What instructions should compiler produce? Assume we’re using $s3 for

starting (“base”) address of a, $s2 for h.

Slide 4

Addition Using Constant

• “Add immediate”

addi r1, r2, c

adds constant c (16-bit signed integer, can be negative) to contents of r2,

puts result in r1.

• Exists because often we need to use a small constant in a program.

“Design Principle 3: Make the common case fast.”



CSCI 2321 February 1, 2013

Slide 5

Representing (Integer) Data in Binary

• Remember that to the hardware “it’s all ones and zero” — any data you’re

working with.

• As an example — representation of signed integers using two’s complement

notation. Should have been covered in CSCI 1320, but read/skim 2.4 if you

don’t remember.

Slide 6

Representing Instructions in Binary

• “It’s all ones and zeros” applies not only to data but also to programs —

“stored program” idea. (Some very early computers didn’t work that way —

programming was by rewiring(!).)

• So we need a way to represent instructions in binary.



CSCI 2321 February 1, 2013

Slide 7

Representing Instructions in Binary, Continued

• First consider what we have to represent:

– For all instructions, which instruction it is.

– For add and sub, three operands (all register numbers).

– For lw and sw, three operands (two register numbers and a

“displacement”).

– And so forth . . .

• So, each instruction will have “fields” — consistent format for storing pieces of

data, a little like a C struct.

Slide 8

Representing Instructions in Binary, Continued

• So, can we use the same format for all instructions? Some data (“which

instruction”) is common to all, but operands may need to be different.

• Can we / should we make all instructions the same length? For MIPS, yes

(other architectures differ), and then define different ways of dividing up the

length — “formats”.

“Design Principle 4: Good design involves good compromises.”



CSCI 2321 February 1, 2013

Slide 9

R Format

• Meant for instructions such as add.

• Fields:

– op — op code, 6 bits

– rs — first source operand, 5 bits

– rt — second source operand, 5 bits

– rd — destination operand, 5 bits

– shamt — “shift amount” (not used for add), 5 bits

– funct — “function field”, 6 bits

• Example — find binary representation of

add $t0, $s1, $s2

Slide 10

I Format

• Meant for instructions such as lw.

• Fields:

– op — op code, 6 bits

– rs — first source operand, 5 bits

– rt — destination operand, 5 bits

– disp — displacement, 16 bits

• Example — find binary representation of

lw $t0, 1200($t1)

• How can we tell which format is being used? determined by value for op.



CSCI 2321 February 1, 2013

Slide 11

Minute Essay

• Write MIPS assembly code for the following C program fragment:

a = b + c + d + e

Assume we have b, c, d, e in $s1 through $s4 and want to have a in $s0

Optional: Can you think of more than one way to do it? If you can, does one

seem better than the other, and why?

OR

• Write MIPS assembler code to exchange the values of a[0] and a[1].

Assume register $s0 contains the address of a (start of the array), and a is

an array of integers.

Slide 12

Minute Essay Answer

• One way:

add $s0, $s1, $s2

add $s0, $s0, $s3

add $s0, $s0, $s4

Another way (not as good since uses more registers?):

add $t0, $s1, $s2

add $t1, $s3, $s4

add $s0, $t0, $t1

• One way:

lw $t0, 0($s0)

lw $t1, 4($s0)

sw $t0, 4($s0)

sw $t1, 0($s0)


