
CSCI 2321 February 4, 2013

Slide 1

Administrivia

• Reminder: Homework 1 due Wednesday.

Slide 2

Minute Essay From Last Lecture

• A few people got something that was more or less right. Many others were in

the ballpark.

• Keep in mind that syntax for assembler-language instructions is pretty

constrained — add has exactly three operands, which must be registers

(usually referenced with $ and a symbolic name).

CSCI 2321 February 4, 2013

Slide 3

A Little About the Simulator

• Your code goes in a file with extension .s. (Sample starter code on “Sample

programs” page. Contains many things we haven’t talked about yet but could

still be useful for trying things out.)

• Start the simulator with command xspim (spim for command-line version).

(Short demo.)

Slide 4

Representing Instructions in Binary — Review/Recap

• Objective here is to represent in binary (ones and zeros) the instructions

we’re defining (add, etc.)

• Representation must indicate which instruction it is and its operands.

• Somewhat tricky in that different (sets of) instructions have different kinds of

operands (contrast add and lw) of possibly-different sizes. Several ways to

deal with that; MIPS designers chose to make all instructions the same length

and different “instruction formats”.

CSCI 2321 February 4, 2013

Slide 5

R Format

• Meant for instructions such as add.

• Fields:

– op — op code, 6 bits

– rs — first source operand, 5 bits

– rt — second source operand, 5 bits

– rd — destination operand, 5 bits

– shamt — “shift amount” (not used for add), 5 bits

– funct — “function field”, 6 bits

• Example — find binary representation of

add $t0, $s1, $s2

Slide 6

I Format

• Meant for instructions such as lw.

• Fields:

– op — op code, 6 bits

– rs — first source operand, 5 bits

– rt — destination operand, 5 bits

– disp — displacement, 16 bits

• Example — find binary representation of

lw $t0, 1200($t1)

Look up op and registers in tables on “green card”.

• How can we tell which format is being used? determined by value for op.

CSCI 2321 February 4, 2013

Slide 7

Logical Operations

• Sometimes useful to be able to work with individual bits — e.g., to implement

a compact array of boolean values.

• Thus, MIPS instruction set provides “logical operations”. Hard to say whether

these exist to support C bit-manipulation operations, or C bit-manipulation

operations exist because most ISAs provide such instructions!

Slide 8

“Shift” Instructions

• C << and >> (on unsigned numbers) are translated into sll (“shift left

logical”) and srl (“shift right logical”).

• sll and srl do what the names imply — bits “fall off” one side, and we add

zeros at the other side. These are R-format instructions, and they use that

“shift amount” field.

• When shifting left, filling with zeros makes sense. But when shifting right, we

might want to extend the sign bit instead. sra (“shift right arithmetic”) does

that.

• Examples?

CSCI 2321 February 4, 2013

Slide 9

Bitwise And and Or

• C & is translated into and or andi. C | is translated into or or ori.

Format/operands are analogous to add and addi.

(Notice/recall that C has two sets of and/or operators — logical and bitwise.

These are the bitwise ones.)

• We could use these to test/set particular bits. Examples? Could we use them

to, e.g., compute remainder when dividing by power of 2?

Slide 10

Other Logical Operations

• “Exclusive or” implements — what the name suggests (see textbook).

• “Nor” likewise. Can be used to implement “not” (see textbook).

CSCI 2321 February 4, 2013

Slide 11

Flow of Control

• So far we know how to do (some) arithmetic, move data into and out of

memory. What about if/then/else, loops? (See sidebar on p. 105 for early

commentary on conditional execution.)

• We need instructions that allow us to “make a decision” — beq (“branch if

equal”), bne (“branch if not equal”).

• Illustrate with an example . . .

Slide 12

Flow of Control Example

• Suppose we have this in C

if (i == j) goto L1:

f = g + h;

L1: f = f - i;

• What instructions should compiler produce? Assume we’re using $s0

through $s4 for for f, g, h, i, j.

• (For now, punt on how to represent L1.)

CSCI 2321 February 4, 2013

Slide 13

Another Flow of Control Example

• Of course, we don’t usually have go to in C. More likely is this:

if (i == j)

f = g + h

else

f = g - h

• What to do with this? Rewrite using go to . . .

Slide 14

Loops

• Do we have enough to do (some kinds of) loops? Yes — example:

Loop: g = g + A[i];

i = i + j;

if (i != h) goto Loop:

assuming we’re using $s1 through $s4 for g, h, i, j, and $s5 for the

address of A.

• Or how about something that looks more like normal C?

while (A[i] == k) {

i = i + j;

• (To be continued . . .)

CSCI 2321 February 4, 2013

Slide 15

Minute Essay

• Is this making sense? Is the pace of the class too fast, too slow, about right?

