CSCT 2321 February 4, 2013

Administrivia

o Reminder: Homework 1 due Wednesday.

Slide 1
Minute Essay From Last Lecture
e A few people got something that was more or less right. Many others were in
the ballpark.
e Keep in mind that syntax for assembler-language instructions is pretty
constrained — add has exactly three operands, which must be registers
Slide 2 (usually referenced with $ and a symbolic name).
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4 A Little About the Simulator h

e Your code goes in a file with extension . S. (Sample starter code on “Sample
programs” page. Contains many things we haven't talked about yet but could
still be useful for trying things out.)

e Start the simulator with command XS pPi M(Spi Mfor command-line version).

Slide 3 (Short demo.)

Representing Instructions in Binary — Review/Recap

e Objective here is to represent in binary (ones and zeros) the instructions
we're defining (add, etc.)

e Representation must indicate which instruction it is and its operands.

o Somewhat tricky in that different (sets of) instructions have different kinds of
Slide 4 operands (contrast add and | w) of possibly-different sizes. Several ways to
deal with that; MIPS designers chose to make all instructions the same length

and different “instruction formats”.
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R Format

e Meant for instructions such as add.
e Fields:
— Op — op code, 6 bits

— 'S — first source operand, 5 bits

Slide 5 — 't — second source operand, 5 bits
— r d — destination operand, 5 bits
— shant — “shift amount” (not used for add), 5 bits
— funct — “function field”, 6 bits
o Example — find binary representation of
add $t0, $s1, $s2
\.
( | Format
e Meant for instructions such as | w.
e Fields:
— Op — op code, 6 bits
— 'S — first source operand, 5 bits
Slide 6

— 't — destination operand, 5 bits
- di sp — displacement, 16 bits
Example — find binary representation of
| w $t0, 1200($t1)

Look up Op and registers in tables on “green card”.

How can we tell which format is being used? determined by value for 0.
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Logical Operations

o Sometimes useful to be able to work with individual bits — e.g., to implement

a compact array of boolean values.

e Thus, MIPS instruction set provides “logical operations”. Hard to say whether
these exist to support C bit-manipulation operations, or C bit-manipulation

Slide 7 operations exist because most ISAs provide such instructions!

“Shift” Instructions

C << and >> (on unsigned numbers) are translated into S| | (“shift left
logical”) and St | (“shift right logical”).

e sl | andsrl dowhat the names imply — bits “fall off” one side, and we add
zeros at the other side. These are R-format instructions, and they use that
Slide 8 “shift amount” field.

e When shifting left, filling with zeros makes sense. But when shifting right, we
might want to extend the sign bit instead. St a (“shift right arithmetic”) does
that.

e Examples?
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Bitwise And and Or

e C &is translated into and or andi . C | is translated into Or or Ori .
Format/operands are analogous to add and addi .
(Notice/recall that C has two sets of and/or operators — logical and bitwise.

These are the bitwise ones.)

Slide 9 e We could use these to test/set particular bits. Examples? Could we use them

to, e.g., compute remainder when dividing by power of 2?

Other Logical Operations

e “Exclusive or” implements — what the name suggests (see textbook).

e “Nor” likewise. Can be used to implement “not” (see textbook).

Slide 10
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Flow of Control

e So far we know how to do (some) arithmetic, move data into and out of
memory. What about if/then/else, loops? (See sidebar on p. 105 for early
commentary on conditional execution.)

e \We need instructions that allow us to “make a decision” — beq (“branch if
Slide 11 equal”), bne (“branch if not equal”).

e lllustrate with an example ...

Flow of Control Example

e Suppose we have thisin C

if (i ==j) goto L1:
f = g + h;
L1: f=f-1i;
Slide 12 e What instructions should compiler produce? Assume we're using $s0

through $s4 forfor f , g, h,i ,j .

e (For now, punt on how to represent L1.)
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Another Flow of Control Example

e Of course, we don't usually have go t 0 in C. More likely is this:
if (i ==17j)
f =g+ h
el se
f =g- h

e What to do with this? Rewrite usinggo to ...
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Loops

e Do we have enough to do (some kinds of) loops? Yes — example:
Loop: g g+ Alil;
b=+
if (i '=h) goto Loop:

assuming we're using $s1 through $s4 forg, h, i ,j , and $s5 for the

address of A.

e Or how about something that looks more like normal C?

while (Ali] == k) {
=0+

e (To be continued ....)
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e |s this making sense? Is the pace of the class too fast, too slow, about right?
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