CSCT 2321 February 4, 2013

Administrivia

o Reminder: Homework 1 due Wednesday.

Slide 1
Minute Essay From Last Lecture
e A few people got something that was more or less right. Many others were in
the ballpark.
e Keep in mind that syntax for assembler-language instructions is pretty
constrained — add has exactly three operands, which must be registers
Slide 2 (usually referenced with $ and a symbolic name).

CSCT 2321 February 4, 2013

4 A Little About the Simulator h

e Your code goes in a file with extension . S. (Sample starter code on “Sample
programs” page. Contains many things we haven't talked about yet but could
still be useful for trying things out.)

e Start the simulator with command XS pPi M(Spi Mfor command-line version).

Slide 3 (Short demo.)

Representing Instructions in Binary — Review/Recap

e Objective here is to represent in binary (ones and zeros) the instructions
we're defining (add, etc.)

e Representation must indicate which instruction it is and its operands.

o Somewhat tricky in that different (sets of) instructions have different kinds of
Slide 4 operands (contrast add and | w) of possibly-different sizes. Several ways to
deal with that; MIPS designers chose to make all instructions the same length

and different “instruction formats”.

CSCT 2321

February 4, 2013

R Format

e Meant for instructions such as add.
e Fields:
— Op — op code, 6 bits

— 'S — first source operand, 5 bits

Slide 5 — 't — second source operand, 5 bits
— r d — destination operand, 5 bits
— shant — “shift amount” (not used for add), 5 bits
— funct — “function field”, 6 bits
o Example — find binary representation of
add $t0, $s1, $s2
\.
(| Format
e Meant for instructions such as | w.
e Fields:
— Op — op code, 6 bits
— 'S — first source operand, 5 bits
Slide 6

— 't — destination operand, 5 bits
- di sp — displacement, 16 bits
Example — find binary representation of
| w $t0, 1200($t1)

Look up Op and registers in tables on “green card”.

How can we tell which format is being used? determined by value for 0.

CSCT 2321 February 4, 2013

Logical Operations

o Sometimes useful to be able to work with individual bits — e.g., to implement

a compact array of boolean values.

e Thus, MIPS instruction set provides “logical operations”. Hard to say whether
these exist to support C bit-manipulation operations, or C bit-manipulation

Slide 7 operations exist because most ISAs provide such instructions!

“Shift” Instructions

C << and >> (on unsigned numbers) are translated into S| | (“shift left
logical”) and St | (“shift right logical”).

e sl | andsrl dowhat the names imply — bits “fall off” one side, and we add
zeros at the other side. These are R-format instructions, and they use that
Slide 8 “shift amount” field.

e When shifting left, filling with zeros makes sense. But when shifting right, we
might want to extend the sign bit instead. St a (“shift right arithmetic”) does
that.

e Examples?

CSCT 2321 February 4, 2013

Bitwise And and Or

e C &is translated into and or andi . C | is translated into Or or Ori .
Format/operands are analogous to add and addi .
(Notice/recall that C has two sets of and/or operators — logical and bitwise.

These are the bitwise ones.)

Slide 9 e We could use these to test/set particular bits. Examples? Could we use them

to, e.g., compute remainder when dividing by power of 2?

Other Logical Operations

e “Exclusive or” implements — what the name suggests (see textbook).

e “Nor” likewise. Can be used to implement “not” (see textbook).

Slide 10

CSCT 2321 February 4, 2013

Flow of Control

e So far we know how to do (some) arithmetic, move data into and out of
memory. What about if/then/else, loops? (See sidebar on p. 105 for early
commentary on conditional execution.)

e \We need instructions that allow us to “make a decision” — beq (“branch if
Slide 11 equal”), bne (“branch if not equal”).

e lllustrate with an example ...

Flow of Control Example

e Suppose we have thisin C

if (i ==j) goto L1:
f = g + h;
L1: f=f-1i;
Slide 12 e What instructions should compiler produce? Assume we're using $s0

through $s4 forfor f , g, h,i ,j .

e (For now, punt on how to represent L1.)

February 4, 2013

Another Flow of Control Example

e Of course, we don't usually have go t 0 in C. More likely is this:
if (i ==17j)
f =g+ h
el se
f =g- h

e What to do with this? Rewrite usinggo to ...

CSCT 2321
(
Slide 13
\.
(
Slide 14

_

Loops

e Do we have enough to do (some kinds of) loops? Yes — example:
Loop: g g+ Alil;
b=+
if (i '=h) goto Loop:

assuming we're using $s1 through $s4 forg, h, i ,j , and $s5 for the

address of A.

e Or how about something that looks more like normal C?

while (Ali] == k) {
=0+

e (To be continued)

CSCT 2321 February 4, 2013

e |s this making sense? Is the pace of the class too fast, too slow, about right?

Slide 15

