
CSCI 2321 February 8, 2013

Slide 1

Administrivia

• Reminder: Homework 1 due today at 5pm. Hardcopy preferred, but e-mail is

acceptable in some circumstances.

• Sample programs on Web (follow “sample programs” link).

• Wikipedia article on “MIPS architecture” is (mildly) interesting reading. Still in

use!

Slide 2

Procedure Calls

• How do we call procedures (a.k.a. functions, methods)? Consider an

example:

a = a + a;

x = foo(a);

b = b + b;

y = foo(b);

• If we’ve compiled this code (and function foo), what do we have in memory

when it’s running? What’s supposed to happen when we get to a call to foo?

CSCI 2321 February 8, 2013

Slide 3

Procedure Calls, Continued

• So, what we have to do to call a procedure is:

1. Put parameters where procedure can find them.

2. Transfer control to procedure.

3. Acquire storage resources for procedure (recall that every time you call a

C function you get a “new copy” of all its local variables).

4. Run procedure.

5. Put results where caller can find them.

6. Return control to caller.

• How to do all this?

Slide 4

Register Conventions

• From hardware point of view, all registers are equal (except 0).

• From software point of view, it’s useful to agree about how to use them — for

parameters, return values, etc. Idea is that compilers automatically enforce

conventions, human-written assembly code should follow them too.

• So far — $s0 through $s7 used for variables, $t0 through $t9 used as

“scratch pads”. (See “green card” for numeric equivalents.)

• Add two more groups — $a0 through $a3 for parameters (punt for now on

what to do if more than four), $v0 and $v1 for return values.

CSCI 2321 February 8, 2013

Slide 5

Jumping To/From Procedures

• When we jump to a procedure, must remember where we came from so we

can return. Do this with “jump and link”

jal label

which puts address of next instruction in register $ra and jumps to label.

(How do we know address of next instruction? “Program counter” (special

register) has address of current instruction.)

• We can then get back with “jump to register”

jr r1

which jumps to address in register r1.

Slide 6

Register Saving and Local Variables

• Actually running the called procedure is straightforward, right?

• Yes, except we need some way to save/restore registers — so we don’t mess

up caller (by convention, “temporary” registers might change, but most others

don’t).

• We also need a way to make space for local variables.

CSCI 2321 February 8, 2013

Slide 7

Register Saving and Local Variables, Continued

• Common solution — use part of memory as a stack (familiar ADT, right?), for

saving registers and other local storage. Makes recursive procedures easier.

• By convention, stack starts at high address and “grows” to lower addresses,

and register $sp (“stack pointer”) points to top.

• How to push / pop?

• Since $sp can change during computation, can use register $fp (“frame

pointer”) to point to start of area (“procedure frame”) for saved registers, local

variables.

Slide 8

Other Variables

• Last but not least, we (may?) need someplace to store variables that can be

preallocated (static/global) and variables that are dynamically allocated (e.g.,

with malloc in C).

• By convention, we put them right after the program code and use register

$gp (“global pointer”) to point to them. Typically call the memory used for

dynamically-allocated variables “the heap”.

CSCI 2321 February 8, 2013

Slide 9

Procedure Calls, Revisited

• Calling procedure must:

– Put parameters in $a0 through $a3 (if more than four, on stack).

– Determine address of called procedure and jump there, saving address of

next instruction.

– Get return value from $v0 (and $v1, if used).

• Called procedure must:

– Save registers as needed, including return address.

– Retrieve parameters and do calculation.

– Put results in $v0 and $v1.

– Restore saved registers.

– Return to caller.

• Example next time . . .

Slide 10

Minute Essay

• None — quiz.

