
CSCI 2321 February 11, 2013

Slide 1

Administrivia

• Quiz solutions will be online, usually shortly after the quiz.

Slide 2

Procedure Calls, Review/Recap

• What we have to do to call a procedure is:

1. Put parameters where procedure can find them.

2. Transfer control to procedure.

3. Acquire storage resources for procedure.

4. Run procedure.

5. Put results where caller can find them.

6. Return control to caller.

• We discussed last time details of how to do that.

CSCI 2321 February 11, 2013

Slide 3

A Little About Assembly Language and Assemblers

• We’ve done example(s) of translating assembly language into machine

language.

• Normally this is done programmatically, by an “assembler”. Accepts symbolic

representations of instructions. Also uses some directives to help keep track

of instructions, define character strings, etc. Details for MIPS assembler in

Appendix B.

Slide 4

Example

• How to compile the following?

int main() {

a = 5; b = 6; c = 7;

x = addproc(a, b, c);

return 0;

}

int addproc(int a, int b, int c) {

int x;

x = a + b + c;

return x;

}

(Sample program call-addproc.s.)

CSCI 2321 February 11, 2013

Slide 5

Data Formats, Revisited

• Recall, inside the computer “it’s all ones and zeros” — so we must encode

anything we want to represent.

• Integers — binary numbers, often 32 bits for MIPS, but could be other sizes

too. Several choices for signed numbers; two’s complement is the most

common.

• Real numbers — floating-point format, later.

• Text — ASCII (8 bits per character) or Unicode (16 bits). Strings represented

with explicit length field (Java) or terminating character (C).

• Many, many more complex formats (.doc, MP3, GIF, etc.).

Slide 6

More Load/Store Instructions

• MIPS architecture defines lw and sw for loading/storing data in 32-bit

chunks; also defines lb (“load byte”) and sb (“store byte”) for loading/storing

data in 8-bit chunks, plus instructions to load/store data in 16-bit chunks.

All must align on appropriate boundaries.

CSCI 2321 February 11, 2013

Slide 7

Working with Constants, Revisited

• Recall addi instruction. Exists because often we need to use a small

constant in a program.

• Uses same format (“I format”) as lw and sw, which allows 16 bits for

constant.

• What if we need more than 16 bits? “Load upper immediate” instruction:

lui register, constant

Puts (16-bit) constant in “upper” 16 bits of register. Follow with addi (or,

better, ori) to load a full 32-bit constant.

Slide 8

Addressing Modes

• We’ve been unspecific about how to specify addresses of a lot of things.

• So, now look at various “addressing modes” — ways to specify where to find

an operand.

• Which is used? Defined by instruction format (R, I, J).

CSCI 2321 February 11, 2013

Slide 9

Addressing Modes, Continued

• Register addressing: Value is in one of the general-purpose registers.

Assembler defines symbolic names for them (e.g., $t0).

• Immediate addressing: Value is in instruction itself.

• Base-displacement addressing: Value is in memory, with address calculated

by adding a displacement to what’s in a register. Example is memory-address

operand of lw, sw.

• PC-relative addressing (more shortly).

• Pseudo-direct addressing (more shortly).

Slide 10

PC-Relative Addressing

• Address is formed by adding offset in instruction (16 bits) and contents of the

program counter (special register).

(Actually, address is offset times 4, plus the updated program counter.)

• Example is conditional branches (beq, bne).

• Does this limit what we can do with beq and bne? If so, how often will it

matter? What could we do to work around it?

CSCI 2321 February 11, 2013

Slide 11

Pseudo-Direct Addressing

• Address is formed by combining address in instruction (26 bits) and upper bits

of program counter.

(Actually, address is address in instruction times 4, or’d with upper bits of

program counter.)

• Example is unconditional branch (j).

• Does this limit what we can do with j? If so, will that be a problem? Can we

work around it?

Slide 12

Minute Essay

• Write MIPS assembler code for the following procedure, saving/restoring the

return address at least:

int foo(int a, int b) {

return a + b;

}

CSCI 2321 February 11, 2013

Slide 13

Minute Essay Answer

• Here is one answer:

foo: addi $sp, $sp, -4

sw $ra, 0($sp)

add $v0, $a0, $a1

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

