
CSCI 2321 February 18, 2013

Slide 1

Administrivia

• Reminder: Homework 2 due Wednesday (5pm).

• Reminder: Quiz 2 Wednesday. Topics from first part of chapter 2 (the sections

Homework 2 says you should have read). Questions of the form “what does

this MIPS assembly code do?” and “write some MIPS code to do this”

possible/likely.

• Final version of Homework 3 to be on Web soon (today?). I will send mail.

Due date next Monday.

• spim tip: spim -f mypgm.s runs program mypgm.s (not in debug

mode).

Slide 2

From Source Code to Execution, Revisited

• Conceptually, four steps: compile, assemble, link, load.

• Real systems may merge/modify steps (e.g., might combine compile and

assemble steps).



CSCI 2321 February 18, 2013

Slide 3

Compiling

• Compiler translates high-level language source code into assembly language.

A single line of HLL code could generate many lines of assembly language.

• Just generating assembly language equivalent to HLL is not trivial. Result,

however, can be much less efficient than what a good assembly-language

programmer can produce. (When HLLs were first introduced, this was an

argument against their use.)

• So compilers typically try to optimize — keep values in registers rather than in

memory, e.g. Conventional wisdom now is that compilers can generate better

assembly-language code than humans, at least most of the time.

• Some compilers will show you the assembly-language result (e.g., gcc with

the -S flag).

Slide 4

Assembling

• Assembler’s job is (mostly!) to translate assembly language into ones and

zeros (machine language). Goal is for this process to be simple and

mechanical, unlike compiling (usually)?

• As part of this, assemblers typically allow programmer to use symbolic labels

to refer to addresses (targets of jumps and conditional branches, variables).

To make this work, assembler must keep “symbol table” mapping names to

addresses.

• Assemblers also sometimes support “pseudoinstructions” — shorthand for

commonly-occurring uses/combinations of real instructions, readily translated

to real instructions.

• (Some assemblers also support defining and using macros, similar to C

preprocessor.)



CSCI 2321 February 18, 2013

Slide 5

Linking

• For small programs assembling the whole program works well enough. But if

the program is large, or if it uses library functions, seems wasteful to

recompile sections that haven’t changed, or to compile library functions every

time (not to mention that that requires having their source code).

• So we need a way to compile parts of programs separately and then

somehow put the pieces back together — i.e., a “linker” (a.k.a. “linkage

editor”).

• To do this, have to define a mechanism whereby programs/procedures can

reference addresses outside themselves and can use absolute addresses

even though those might change.

Slide 6

Linking, Continued

• How? define format for “object code” — machine language, plus additional

information about size of code, size of statically-allocated variables, symbols,

and instructions that need to be “patched” to correct addresses. Format is

part of complete “ABI” (Application Binary Interface), specific to combination

of architecture and operating system.

• Linker’s job is then to combine pieces of object code, merging code and

static-variable sections, resolving references, and patching addresses. Result

should be something operating system can load into memory and execute —

“executable file”.



CSCI 2321 February 18, 2013

Slide 7

Sidebar: Dynamic Linking

• In earlier times linkers behaved as just described, linking in all needed library

code. But this may not be efficient: May result in pulling in code for unused

procedures. Also, if the system supports concurrent execution of multiple

threads/applications/etc., might be nice to allow them to share a single copy

in memory of library code.

• “Dynamic linking” supports this, and has the side benefit(?) of allowing

updates to library code without relinking all applications that use it. (Is this

always a benefit?)

• Implementations have different names — “DLL” in Windows, “shared library”

in UNIX. How it works is similar — at link time, link in “stub” routine that at

runtime locates the desired code, loads it into memory (if necessary!) and

patches references.

Slide 8

Loaders

• So what’s left . . .

• “Executable file” contains all machine language for program, except for any

dynamically-linked library procedures. What does the operating system have

to do to run the program? Well . . .

• Obviously it needs to copy the static parts (code, variables) into memory.

(How big are they?) Also it needs to set up to transfer control to the main

program, including passing any parameters. And it may need to perform

dynamic linking. Finally, what about those absolute addresses?

• So as with object code, executable files contain more than just machine

language. File format, like that of object code, is part of ABI.



CSCI 2321 February 18, 2013

Slide 9

Minute Essay

• One advantage of dynamic linking is that it allows for replacing/updating

library procedures (with no need to recompile/relink applications that use

them). Is there a disadvantage to this?

Slide 10

Minute Essay Answer

• Yes — if the replacement library code has new bugs, applications that worked

may fail. Also, applications that rely on undocumented behavior may stop

working.


