
CSCI 2321 February 25, 2013

Slide 1

Administrivia

• Reminder: Homework 2 due today. Homework 3 (by request) due

Wednesday.

(Some problems in Homework 2 seem ill-posed. ”Corrections” added to

write-up, but it’s probably simplest to just answer them as asked, as if they

made sense.)

(Questions?)

• Quiz 3 next Monday.

• Appendix B has some additional information about MIPS assembler

language. Section B.10 in particular has short descriptions of all instructions

and also a table (p. 50) that maps opcode to instruction name.

Slide 2

Representing Data, Revisited

• To the hardware “it’s all ones and zeros”. But those ones and zeros can

encode numbers (various forms), text, etc.

• Numbers in particular are interesting because we want to implement

arithmetic operations.

• In theory you learned about integer representation and arithmetic in

CSCI 1320. Review . . .



CSCI 2321 February 25, 2013

Slide 3

Binary Versus Decimal (Review?)

• In decimal (base 10) notation, each digit is multiplied by a power of 10. Same

idea for binary (base 2), but using powers of 2.

• So, converting from binary to decimal is easy (if tedious), working from

definition. Example?

• Converting from decimal to binary? Repeatedly divide by 2 and record

remainders . . .

We could describe this as a recursive algorithm for computing bits(n):

– Base case is n < 2; trivial.

– For recursive step, divide n by 2 to get quotient q and remainder r. Then

n = 2q + r, and:

The last bit of bits(n) should be r.

The remaining bits are bits(q), left-shifted by 1.

• Terminology: “Least significant” and “most significant” bits.

Slide 4

Binary Versus Hexadecimal (Review?)

• Binary is useful for showing real internal state but not very compact. Decimal

is compact but not so easy to convert to/from binary.

• We might notice — easy to convert to/from a base that’s a power of 2. Hence

the use of “octal” (base 8) and “hexadecimal” (base 16). For the latter, we

need more than 10 digits, so we use “A” through “F”.

Examples?

• Notice that we can also convert directly to/from decimal, much as we did for

binary.



CSCI 2321 February 25, 2013

Slide 5

Representing Integers (Review?)

• Representing non-negative integers is easy — convert to binary and pad on

the left with zeros.

• What about negative integers?

• Could try using one bit for sign, but then you have +0 and -0, and there are

other complications.

• Or . . . consider a car odometer — in effect, representable numbers form a

circle, since adding 1 to largest number yields 0.

Slide 6

Representing Integers, Continued (Review?)

• We could implement the car-odometer idea in binary, and then choose where

to “cut the circle” (between smallest and largest):

– Between 0 and all ones — unsigned integers.

– Between largest number with 0 as the MSB and smallest number with 1 as

MSB — “two’s complement” signed integers.

• Notice that with the two’s complement scheme, +1/-1 moves us “around the

circle” — nothing special needed for negative numbers.

• Notice that if we have n bits, adding 2n to x gives us x again. This leads to

an easy way to compute −x: Compute 2n
− x, and notice that

2n
− x = (2n

− 1) − x + 1

which is very easy to compute . . .

Examples?



CSCI 2321 February 25, 2013

Slide 7

Minute Essay

• What are you finding interesting about the problems for chapter 2? what are

you finding difficult?


