Administrivia

- Reminder: Homework 2 due today. Homework 3 (by request) due Wednesday.
(Some problems in Homework 2 seem ill-posed. "Corrections" added to write-up, but it's probably simplest to just answer them as asked, as if they

Slide 1

 made sense.)(Questions?)

- Quiz 3 next Monday.
- Appendix B has some additional information about MIPS assembler language. Section B. 10 in particular has short descriptions of all instructions and also a table (p.50) that maps opcode to instruction name.

Representing Data, Revisited

- To the hardware "it's all ones and zeros". But those ones and zeros can encode numbers (various forms), text, etc.
- Numbers in particular are interesting because we want to implement arithmetic operations.

Slide 2 - In theory you learned about integer representation and arithmetic in CSCI 1320. Review ...

Binary Versus Decimal (Review?)

- In decimal (base 10) notation, each digit is multiplied by a power of 10. Same idea for binary (base 2), but using powers of 2.
- So, converting from binary to decimal is easy (if tedious), working from definition. Example?

Slide 3

- Converting from decimal to binary? Repeatedly divide by 2 and record remainders ...

We could describe this as a recursive algorithm for computing bits (n):

- Base case is $n<2$; trivial.
- For recursive step, divide n by 2 to get quotient q and remainder r. Then $n=2 q+r$, and:
The last bit of $\operatorname{bits}(n)$ should be r.
The remaining bits are bits (q), left-shifted by 1 .
- Terminology: "Least significant" and "most significant" bits.

Binary Versus Hexadecimal (Review?)

- Binary is useful for showing real internal state but not very compact. Decimal is compact but not so easy to convert to/from binary.
- We might notice - easy to convert to/from a base that's a power of 2. Hence the use of "octal" (base 8) and "hexadecimal" (base 16). For the latter, we need more than 10 digits, so we use " A " through " F ".

Examples?

- Notice that we can also convert directly to/from decimal, much as we did for binary.

Representing Integers (Review?)

- Representing non-negative integers is easy - convert to binary and pad on the left with zeros.
- What about negative integers?
- Could try using one bit for sign, but then you have +0 and -0 , and there are

Slide 5

 other complications.- Or . . . consider a car odometer - in effect, representable numbers form a circle, since adding 1 to largest number yields 0 .

Representing Integers, Continued (Review?)

- We could implement the car-odometer idea in binary, and then choose where to "cut the circle" (between smallest and largest):
- Between 0 and all ones - unsigned integers.
- Between largest number with 0 as the MSB and smallest number with 1 as

MSB - "two's complement" signed integers.

- Notice that with the two's complement scheme, $+1 /-1$ moves us "around the circle" - nothing special needed for negative numbers.
- Notice that if we have n bits, adding 2^{n} to x gives us x again. This leads to an easy way to compute $-x$: Compute $2^{n}-x$, and notice that $2^{n}-x=\left(2^{n}-1\right)-x+1$
which is very easy to compute ...
Examples?

