
CSCI 2321 March 25, 2013

Slide 1

Administrivia

• (None.)

Slide 2

Numbers and Arithmetic — Review/Recap

• As in many other architectures, in MIPS integers are represented as 32-bit

binary quantities. They can be signed or unsigned. Signed numbers are

represented using two’s complement notation.

• Addition in binary works much like addition in decimal (taking into account the

different bases). Two’s complement means we don’t have to do anything

special if one value is negative, and we can do subtraction by taking the

negative of the second operand (easy) and adding.

• But there is one catch, namely that the value can overflow . . .

CSCI 2321 March 25, 2013

Slide 3

Addition/Subtraction and Overflow, Continued

• Notice that we can’t get overflow unless input operands have the same sign.

• If we add two positive numbers and get overflow, how can we tell this has

happened? Does this always work?

• If we add two negative numbers and get overflow, how can we tell this has

happened? Does this always work?

Slide 4

Addition/Subtraction and Overflow, Continued

• When we detect overflow, what do we do about it?

• From a HLL standpoint, we could ignore it, crash the program, set a flag, etc.

• To support various HLL choices, MIPS architecture includes two kinds of

addition instructions:

– Unsigned addition just ignores overflow.

– Signed addition detects overflow and “generates an exception” (interrupt)

— hardware branches to a fixed address (“exception handler”), usually

containing operating system code to take appropriate action.

This is why, if you look at MIPS assembler for C programs, the arithmetic is

unsigned — C ignores overflow, so why bother to look for it.

CSCI 2321 March 25, 2013

Slide 5

Implementing Arithmetic — Preview

• In the next chapter we start talking about hardware design (though still at a

somewhat abstract level).

• For now it may be useful to know that the low-level building blocks are entities

that can evaluate Boolean expressions — very simple ones at the lowest

level, and slightly more complex ones one level up.

• So for example we can implement addition by first making a “one-bit adder”

that maps three inputs (two operands and carry-in) to two outputs (result and

carry-out), and then chaining together 32 of them.

• (Multiplication and division may need to be more complex, involving multiple

steps and control-flow logic.)

Slide 6

More Arithmetic — Multiplication

• As with addition, first think through how we do this “by hand” in base 10.

(Review terminology: In a × b, call a the “multiplicand” and b the “multiplier”.)

Example?

• We can do the same thing in base 2, but it’s simpler, no? computing the

partial results is easier. This gives the textbook’s first algorithm, figure 3.5.

(Work through example if time permits.)

Notice also that overflow could be a lot worse here — so normally we’ll

compute a result twice as big as the inputs.

(We can do better — later.)

• What about signs? Algorithm works, if we extend the sign bit when we shift

right.

CSCI 2321 March 25, 2013

Slide 7

Multiplication, Continued

• In MIPS architecture, 64-bit product / work area is kept two special-purpose

registers (lo and hi). Two instructions needed to do a multiplication and get

the result:

mult rs1, rs2

mflo rdest

Assembler provides a “pseudoinstruction”:

mul rdest, rs1, rs2

• Notice, however, that a “smart” compiler might turn some multiplications into

shifts. (Which ones?)

Slide 8

Division

• As with other arithmetic, first think through how we do this “by hand” in

base 10. (Review terminology: We divide “dividend” a by “divisor” b to

produce quotient q and remainder r, where a = bq + r and 0 ≤ |r| < b.)

Example?

We can do the same thing in base 2; this gives the algorithm in figure 3.10.

(Work through example if time permits.)

(Here too we can do better — later).

• What about signs? Simplest solution is (they say!) to perform division on

non-negative numbers and then fix up signs of the result if need be.

CSCI 2321 March 25, 2013

Slide 9

Division, Continued

• In MIPS architecture, 64-bit work area for quotient and remainder is kept in

same two special-purpose registers used for multiplication (lo and hi).

After division, quotient is in lo and remainder is in hi. Two (or more)

instructions needed to do a division and get the result:

div rs1, rs2

mflo rq

mfhi rr

Assembler provides a “pseudoinstruction”:

div rdest, rs1, rs2

• Notice, however, that a “smart” compiler might turn some divisions into shifts.

(Which ones?)

Slide 10

Minute Essay

• Have you had any exposure to the lower-level things mentioned today (AND

and OR gates).

