
CSCI 2321 April 12, 2013

Slide 1

Administrivia

• Reminder: Homework 4 due today. Next homework to be on the Web soon.

• Quiz 5 next Friday. Topic(s) TBA next week, but from Appendix C.

• In reading/skimming Appendix C, okay to skim/skip sections involving

hardware description language (Verilog).
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Minute Essay From Last Lecture

• Many people guessed right. Figures C.6.1 and C.6.2 provide another analogy

that may be helpful in understanding the overall idea of data flowing through

logic blocks.
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Memory Elements

• So now we (sort of) know how to design logic blocks that use switches/gates

to compute output bits from input bits.

• But where do those input bits come from, and where do the output bits go?

“state elements” — things that can save values.

• (Keep in mind that the goal here is to get a sense of how you can build

something that stores a value out of gates/switches. Details are interesting

but can to some extent be skimmed.)
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A Very Little Bit About Clocking

• Many (most, currently?) hardware designs are based on the idea of a “clock”

— something that generates regular signal changes and can be used to

control when updates to state elements happen.

• As sketched in section C.7 — inputs/outputs to combinational logic block are

connected to state elements. Input values are “sampled” at one point in the

clock cycle and written out at a different point in the cycle — “synchronous”

circuit. (So does that mean “asynchronous” circuits are also possible? yes,

but well beyond the scope of this course.)

• Why do this? as a way to avoid race conditions.

• One implication, though, is that the clock cycle has to be long enough for the

slowest combinational logic block!
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Memory Elements, Continued

• Idea here is to come up with a logic block that can hold a value:

– Inputs are old value, “set” (to 1), “reset” (to 0).

– Outputs are value, negation of value.

• An unclocked logic block that can do this — Figure C.8.1.
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Memory Elements, Continued

• Can then extend this to something that only samples (data) input when clock

input is 1 (“D latch”, Figure C.8.2) and further to something whose output only

changes when clock input is 0 (“D flip-flop”, Figure C.8.4).

• Notice how we’re starting with simple things and using them to construct more

complicated things — much as you do in writing software. “Hm!” ?
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Register Files

• So now we have something that can read/write/save one bit. But what we

want is a bunch of “registers” that can each read/write/save 32 bits. What to

do?

• Usual approach — “register file”, a logic block that holds a bunch of values

and allows us to read and write them. Figures in section C.9 give more details

(next slide) — and this should look like something that would be useful in

implementing MIPS instructions with three register operands, no?
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Register Files, Continued

• Inputs:

– Two (multi-bit) register numbers saying which registers we want to “read”

(use as input to some operation).

– One (multi-bit) register number saying which register we (might) want to

“write” (change the value of).

– One (32-bit) value to (maybe) save in a register.

– A “yes do a write” bit.

• Outputs:

– Two (32-bit) values representing the contents of the two registers selected

by the “read register” numbers used as input
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Minute Essay

• None — quiz.


