
CSCI 2321 April 12, 2013

Slide 1

Administrivia

• Reminder: Homework 4 due today. Next homework to be on the Web soon.

• Quiz 5 next Friday. Topic(s) TBA next week, but from Appendix C.

• In reading/skimming Appendix C, okay to skim/skip sections involving

hardware description language (Verilog).

Slide 2

Minute Essay From Last Lecture

• Many people guessed right. Figures C.6.1 and C.6.2 provide another analogy

that may be helpful in understanding the overall idea of data flowing through

logic blocks.



CSCI 2321 April 12, 2013

Slide 3

Memory Elements

• So now we (sort of) know how to design logic blocks that use switches/gates

to compute output bits from input bits.

• But where do those input bits come from, and where do the output bits go?

“state elements” — things that can save values.

• (Keep in mind that the goal here is to get a sense of how you can build

something that stores a value out of gates/switches. Details are interesting

but can to some extent be skimmed.)

Slide 4

A Very Little Bit About Clocking

• Many (most, currently?) hardware designs are based on the idea of a “clock”

— something that generates regular signal changes and can be used to

control when updates to state elements happen.

• As sketched in section C.7 — inputs/outputs to combinational logic block are

connected to state elements. Input values are “sampled” at one point in the

clock cycle and written out at a different point in the cycle — “synchronous”

circuit. (So does that mean “asynchronous” circuits are also possible? yes,

but well beyond the scope of this course.)

• Why do this? as a way to avoid race conditions.

• One implication, though, is that the clock cycle has to be long enough for the

slowest combinational logic block!



CSCI 2321 April 12, 2013

Slide 5

Memory Elements, Continued

• Idea here is to come up with a logic block that can hold a value:

– Inputs are old value, “set” (to 1), “reset” (to 0).

– Outputs are value, negation of value.

• An unclocked logic block that can do this — Figure C.8.1.

Slide 6

Memory Elements, Continued

• Can then extend this to something that only samples (data) input when clock

input is 1 (“D latch”, Figure C.8.2) and further to something whose output only

changes when clock input is 0 (“D flip-flop”, Figure C.8.4).

• Notice how we’re starting with simple things and using them to construct more

complicated things — much as you do in writing software. “Hm!” ?



CSCI 2321 April 12, 2013

Slide 7

Register Files

• So now we have something that can read/write/save one bit. But what we

want is a bunch of “registers” that can each read/write/save 32 bits. What to

do?

• Usual approach — “register file”, a logic block that holds a bunch of values

and allows us to read and write them. Figures in section C.9 give more details

(next slide) — and this should look like something that would be useful in

implementing MIPS instructions with three register operands, no?

Slide 8

Register Files, Continued

• Inputs:

– Two (multi-bit) register numbers saying which registers we want to “read”

(use as input to some operation).

– One (multi-bit) register number saying which register we (might) want to

“write” (change the value of).

– One (32-bit) value to (maybe) save in a register.

– A “yes do a write” bit.

• Outputs:

– Two (32-bit) values representing the contents of the two registers selected

by the “read register” numbers used as input



CSCI 2321 April 12, 2013

Slide 9

Minute Essay

• None — quiz.


