CSCI 2321 April 17, 2013

Administrivia

e \We'll stay with six quizzes but have the next one next Wednesday.

e Next homework coming soon (I hope!).

Slide 1

Implementing the MIPS Architecture

e Goal of chapter 4 is to show how we could use the low-level building blocks
described in Appendix C to implement a proof-of-concept subset of the
architecture (instructions, registers, etc.) we've defined.

e “Proof of concept”? yes, the subset we’ll implement may not be enough to do
Slide 2 anything useful or interesting, but it should be enough to illustrate how we

could implement the rest of the architecture.




CSCI 2321 April 17, 2013

Subset to Implement

e Representative memory-access instructions (I W, SW).
e Representative arithmetic/logical instructions (add, sub, and, or, sl t).

e Representative control-flow instructions (beq, j ).

Slide 3
Overview
e Very simplified view of what a processor does: Fetch next instruction. Figure
out what it is and execute it. Lather, rinse, repeat.
Implicit in this description is a notion of “next instruction”, which normally
moves through the stored program in sequence but not always (e.g., for
. control-flow instructions).
Slide 4

e What we have to work with:
— Combinational logic blocks (Appendix C).

— Sequential logic blocks (“state elements”, Appendix C).




CSCI 2321 April 17, 2013

Clocking — Executive-Level Summary

e Hardware will include something that implements a “clock cycle”.

e State elements’ inputs are “sampled” during one phase of this cycle, and

outputs can change during another phase.

e Length of cycle determines how complicated the various logic blocks can be

Slide 5 (or vice versa).
Some Components We Want
e A register file.
e Some memory (which for simplicity we’'ll separate into instruction memory and
data memory).
o Some way of representing where to find the “next” instruction — a “special
Slide 6

purpose” register typically called “program counter” (PC).
® One or more ALUs (why more than one?).
e “Control logic”. (More soon.)

e Figures 4.1 and 4.2 sketch overall plan. How does Figure 4.2 relate to what

we needtodo...




CSCI 2321 April 17, 2013

Fetching Instructions and Updating PC

e For all instructions, start by getting instruction from memory. (What do we
need? How does this map to Figure 4.2?)

e For most instructions, at some point we need to increment PC. (What do we
need? How does this map to the figure?)

Slide 7 e And then the three groups of instructions do different things, but there are
some commonalities ...
Memory-Access Instructions

e Instruction includes two registers (one for memory address, one for data) and
a 16-bit displacement.

o Needed computation:
— Add displacement to register containing address.

Slide 8

— Use result to access memory, loading/storing to/from register containing
data.

o How does this map to Figure 4.2?




CSCI 2321 April 17, 2013

Arithmetic/Logic Instructions

e Instruction includes three registers (two for input operands, one for result).
o Needed computation:

— Perform operation (with ALU) using values from two registers as inputs.

— Save result in target register.

Slide 9
o How does this map to Figure 4.2?
Control-Flow Instructions (beq)

e (j later.)

e Instruction includes two registers (data to compare) and a 16-bit displacement

used to find target of branch.
o Needed computation:
Slide 10

— Compare contents of two registers.
— Compute address of branch target (PC plus displacement).
— Use result of comparison to choose value for next PC.

o How does this map to Figure 4.2?




CSCI 2321 April 17, 2013

4 )

Overview Revisited

e Notice that Figure 4.2 seems to have ways to do everything we need to do —
paths for data to flow from one place to another, including into ALU(s) for

computation.

e Notice also that for every instruction we're in some sense doing the same
Slide 11 things (have each ALU compute something), but some results are essentially
discarded. (Example — beq computes two “next instruction” addresses, but

only saves one of them.) This is very typical of how things work at this level.

e None really — sign in, unless questions.

Slide 12




