CSCI 2321 April 19, 2013

Administrivia

e Homework 5 on the Web (finally!). Due in a week. Problems may also give

some hints about topics for next quiz.

o Homework 2 graded (for almost everyone). Updated solution in hardcopy (still

not quite right — next slide).

Slide 1
Homework 2 Solution Errata
e In solution to problem 2.6.1, references to B[j] should be A[j] , and code
to compute address to load this value should use $56 not $s7.
Slide 2

CSCI 2321 April 19, 2013

Implementing (Part Of) MIPS ISA — Review/Recap

e Previously we started sketching out something that implements a
representative subset of the MIPS architecture (i.e., the definition of
instructions, etc., used in the MIPS assembler programs we wrote), using
building blocks discussed in Appendix C.

Slide 3 e Figure 4.2 shows most pieces of overall design; we discussed briefly how the
various things we want to do correspond to parts of this figure. Section 4.3

gives more detail, and fills in a few more pieces ...

(The “Datapath”)

e As discussed previously in class (and in more detail in section 4.2), we will
need instruction memory, data memory, register file, PC, a full ALU, and a
couple of adders.

e Did we leave anything out? yes:

) — Input to ALU / adder is two 32-bit quantities, but for some instructions what

Slide 4 we have in the instruction is 16 bits — so we need something to extend
that to 32 bits by extending the sign.

— Both control-flow instructions include something that needs to be shifted
two bits before being used to compute a target address, so we need to

support that.

e Combine with “datapath” part of Figure 4.2 to get Figure 4.11, which leaves
out the “control” part, substituting not-connected-yet control inputs (blue in the

text).
J

CSCI 2321 April 19, 2013

Control Logic

e So we have a “datapath” that can do things, but there are some inputs that
aren’t connected to anything. An analogy — the datapath is a puppet, and
these inputs are its strings.

e \Who/what pulls the strings? the “control logic” — combinational logic whose
Slide 5 input is the current instruction plus any other needed information and whose

output is those disconnected inputs to datapath.

e As mentioned in Appendix C, tools exist to transform truth tables into
combinational logic, so our job is to come up with ones that will generate the
signals we need for the datapath.

e Section 4.4 works through details. A lot of it should seem like common sense
(viewed from the right angle?). Only potentially tricky part is input to ALU

“which operation?” field (a bit more next time).

. J

e The design sketched so far has two separate memory blocks, one for
instructions and one for data. This turns out to be needed for the simplest
implementation, one in which each instruction executes in a single cycle.
Why? is there something different about the types of values to be stored, or is

there some other reason?
Slide 6

CSCI 2321 April 19, 2013

e This is one of the textbook’s “check yourself” questions (p. 315), and the

answer is at the end of the chapter.

Slide 7

