
CSCI 2321 April 29, 2013

Slide 1

Administrivia

• Reminder: Quiz 6 Wednesday.

• Homework 6 on the Web; due Friday. No more required homeworks, though

there will likely be some optional extra-credit problems.

Slide 2

Minute Essay From Last Lecture

• (Several answers having to do with privileged/non-privileged users. Important

points made, but not really the point?)

• The point I was trying to make: If the processor has two modes of execution,

one privileged and one not, how do you get from one to another? Going from

privileged to non-privileged seems harmless, but the other way?



CSCI 2321 April 29, 2013

Slide 3

Exceptions — Review/Recap

• Several situations (e.g., errors and external interrupts) in which it would be

useful to interrupt normal flow of control and — do something.

• MIPS architecture, like many, has a notion of “exceptions” (a.k.a. “interrupts”)

that cause the processor to transfer control to a fixed location, with a saved

PC value and some indication of the cause of the exception.

• Figure 4.66 shows what has to be added to the pipelined design to make this

work. Pipelining makes implementing this idea more complicated in some

ways (must consider what to do about all instructions in the pipeline), possibly

simpler in others (there is already support for dealing with “control hazards”,

similar in some ways).

Slide 4

Parallel Computing — Overview

• (In the time we have left — a little about parallel computing and hardware to

support it.)

• Support for “things happening at the same time” goes back to early mainframe

days, in the sense of having more than one program loaded into memory and

available to be worked on. If only one processor, “at the same time” actually

means “interleaved in some way that’s a good fake”. (Why? To “hide latency”.)

• Support for actual parallelism goes back almost as far, though mostly of

interest to those needing maximum performance for large problems.

Somewhat controversial, and for many years “wait for Moore’s law to provide

a faster processor” worked well enough. Now, however . . .



CSCI 2321 April 29, 2013

Slide 5

Parallel Computing Overview, Continued

• Improvements in “processing elements” (processors, cores, etc.) seem to

have stalled. Instead hardware designers are coming up with ways to provide

more processing elements.

• One result is that multiple applications can execute really at the same time.

• Another result is that individual applications could run faster by using multiple

processing elements.

Non-technical analogy: If the job is too big for one person, you hire a team.

But making this effective involves some challenges (how to split up the work,

how to coordinate).

• In a perfect world, maybe compilers could be made smart enough to convert

programs written for a single processing element to ones that can take

advantage of multiple PEs. Some progress has been made, but goal is

elusive.

Slide 6

Parallel Computing — Hardware Platforms

• Clusters — multiple processor/memory systems connected by some sort of

interconnection (could be ordinary network or fast special-purpose hardware).

Examples go back many years.

• Multiprocessor systems — single system with multiple processors sharing

access to a single memory. Examples also go back many years.

• Multicore processors — single “processor” with multiple independent PEs

sharing access to a single memory. Relatively new. Hardware multithreading

is maybe a special case?

• “SIMD” platforms — hardware that executes a single stream of instructions

but operates on multiple pieces of data at the same time. Popular early on

(vector processors, early Connection Machines) and now being revived

(GPUs used for general-purpose computing).



CSCI 2321 April 29, 2013

Slide 7

Minute Essay

• What experience, if any, do you have with programs that make use of multiple

threads, processes, etc.?


