
CSCI 2321 February 6, 2014

Slide 1

Administrivia

• Homework 1 is on the Web (mail sent late Thursday).

• Course “useful links” page updated.

• What to put as subject line of minute essay? really just “minute essay” is

enough this semester (T/R I have only this course, and your name and the

date are easily findable).

Slide 2

Assembly Language and MIPS Instructions — Recap

• Last time we talked a little in general about what assembly language looks

like.

• We also looked at some simple instructions in the MIPS ISA (arithmetic and

load/store).

CSCI 2321 February 6, 2014

Slide 3

A Little About the Simulator

• Your code goes in a file with extension .s. (Sample starter code on “Sample

programs” page. Contains many things we haven’t talked about yet but could

still be useful for trying things out.)

• Start the simulator with command xspim (spim for command-line version).

(Short demo.)

Slide 4

Representing Instructions in Binary

• “It’s all ones and zeros” applies not only to data but also to programs —

“stored program” idea. (Some very early computers didn’t work that way —

programming was by rewiring(!).)

• So we need a way to represent instructions in binary . . .

CSCI 2321 February 6, 2014

Slide 5

Representing Instructions in Binary, Continued

• First consider what we have to represent:

– For all instructions, which instruction it is.

– For add and sub, three operands (all register numbers).

– For lw and sw, three operands (two register numbers and a

“displacement”).

– And so forth . . .

• So, each instruction will have “fields” — consistent format for storing pieces of

data, a little like a C struct.

Slide 6

Representing Instructions in Binary, Continued

• So, can we use the same format for all instructions? Some data (“which

instruction”) is common to all, but operands may need to be different.

• Can we / should we make all instructions the same length? For MIPS, yes

(other architectures differ), and then define different ways of dividing up the

length — “formats”.

Basic principle: “Good design involves good compromises.”

CSCI 2321 February 6, 2014

Slide 7

R Format

• Meant for instructions such as add.

• Fields:

– op — op code, 6 bits

– rs — first source operand, 5 bits

– rt — second source operand, 5 bits

– rd — destination operand, 5 bits

– shamt — “shift amount” (not used for add), 5 bits

– funct — “function field”, 6 bits

• Example — find binary representation of

add $t0, $s1, $s2

Slide 8

I Format

• Meant for instructions such as lw.

• Fields:

– op — op code, 6 bits

– rs — first source operand, 5 bits

– rt — destination operand, 5 bits

– disp — displacement, 16 bits

• Example — find binary representation of

lw $t0, 1200($t1)

• How can we tell which format is being used? determined by value for op.

CSCI 2321 February 6, 2014

Slide 9

Logical Operations

• Sometimes useful to be able to work with individual bits — e.g., to implement

a compact array of boolean values.

• Thus, MIPS instruction set provides “logical operations”. Hard to say whether

these exist to support C bit-manipulation operations, or C bit-manipulation

operations exist because most ISAs provide such instructions!

Slide 10

“Shift” Instructions

• C << and >> (on unsigned numbers) are translated into sll (“shift left

logical”) and srl (“shift right logical”).

• sll and srl do what the names imply — bits “fall off” one side, and we add

zeros at the other side. These are R-format instructions, and they use that

“shift amount” field.

• When shifting left, filling with zeros makes sense. But when shifting right, we

might want to extend the sign bit instead. sra (“shift right arithmetic”) does

that.

• Examples?

CSCI 2321 February 6, 2014

Slide 11

Bitwise And and Or

• C & is translated into and or andi. C | is translated into or or ori.

Format/operands are analogous to add and addi.

(Notice/recall that C has two sets of and/or operators — logical and bitwise.

These are the bitwise ones.)

• We could use these to test/set particular bits. Examples? Could we use them

to, e.g., compute remainder when dividing by power of 2?

Slide 12

Other Logical Operations

• “Exclusive or” implements — what the name suggests (see textbook).

• “Nor” likewise. Can be used to implement “not” (see textbook).

CSCI 2321 February 6, 2014

Slide 13

Flow of Control

• So far we know how to do (some) arithmetic, move data into and out of

memory. What about if/then/else, loops? (See sidebar on p. 90 for early

commentary on conditional execution.)

• We need instructions that allow us to “make a decision” — beq (“branch if

equal”), bne (“branch if not equal”).

• Illustrate with an example . . .

Slide 14

Flow of Control Example

• Suppose we have this in C

if (i == j) goto L1:

f = g + h;

L1: f = f - i;

• What instructions should compiler produce? Assume we’re using $s0

through $s4 for for f, g, h, i, j.

• (For now, punt on how to represent L1.)

CSCI 2321 February 6, 2014

Slide 15

Another Flow of Control Example

• Of course, we don’t usually have go to in C. More likely is this:

if (i == j)

f = g + h

else

f = g - h

• What to do with this? Rewrite using go to . . .

Slide 16

Loops

• Do we have enough to do (some kinds of) loops? Yes — example:

Loop: g = g + A[i];

i = i + j;

if (i != h) goto Loop:

assuming we’re using $s1 through $s4 for g, h, i, j, and $s5 for the

address of A.

• Or how about something that looks more like normal C?

while (A[i] == k) {

i = i + j;

CSCI 2321 February 6, 2014

Slide 17

More Flow of Control

• We can do if/then/else and loops, but only if condition being tested is equals /

not equals.

• So, we need instructions such as blt, ble, right?

• But those are difficult to implement well, so instead MIPS has “set on less

than”:

slt r1, r2, r3

which compares the contents of registers r2 and r3 and sets r1 — 1 if r2

is smaller, else 0.

• Also define that register 0 ($zero) always contains 0.

• Example — compile the following C:

if (a < b) go to Less:

assuming we’re using $s0, $s1 for a, b

Slide 18

More Flow of Control, Continued

• Do we have enough now? for all six possible C comparisons of integers?

Yes . . .

• One more C flow-of-control construct we could talk about — switch — but

defer for now.

• But we do want to talk about one more HLL feature, namely functions (next

time . . .).

CSCI 2321 February 6, 2014

Slide 19

Minute Essay

• None — sign in. (Unless you have questions!)

