
CSCI 2321 February 18, 2014

Slide 1

Administrivia

• Reminder: Homework 1 due today. Hardcopy now, or later in my mailbox in

the ASO (Administrative Support Office in the CSI).

• Next homework to be on the Web soon, due in a week.

• Quiz 1 a week from today. Open book/notes. Likely topics those covered by

homework.

• We should discuss whether to reschedule the midterm for after spring break.

• Wikipedia article on “MIPS architecture” is (mildly) interesting reading. Still in

use!

Slide 2

Recap/Review

• We’ve talked about a small suite of MIPS instructions for basic arithmetic and

conditional execution.

• We’ve also talked about how to encode them in binary — except we haven’t

yet talked about how to address addressing.

• So we almost know everything we need to know to translate programs in an

HLL into assembler — except we don’t know how to do functions.

CSCI 2321 February 18, 2014

Slide 3

Procedure Calls

• How do we call procedures (a.k.a. functions, methods)? Consider an

example:

a = a + a;

x = foo(a);

b = b + b;

y = foo(b);

• If we’ve compiled this code (and function foo), what do we have in memory

when it’s running? What’s supposed to happen when we get to a call to foo?

Slide 4

Procedure Calls, Continued

• So, what we have to do to call a procedure is:

1. Put parameters where procedure can find them.

2. Transfer control to procedure.

3. Acquire storage resources for procedure (recall that every time you call a

C function you get a “new copy” of all its local variables).

4. Run procedure.

5. Put results where caller can find them.

6. Return control to caller.

• How to do all this?

CSCI 2321 February 18, 2014

Slide 5

Register Conventions

• From hardware point of view, all registers are in some sense the same

(except 0).

• From software point of view, it’s useful to agree about how to use them — for

parameters, return values, etc. Idea is that compilers automatically enforce

conventions, human-written assembly code should follow them too.

• So far — $s0 through $s7 used for variables, $t0 through $t9 used as

“scratch pads”. (See reference card for numeric equivalents.)

• Add two more groups — $a0 through $a3 for parameters (punt for now on

what to do if more than four), $v0 and $v1 for return values.

Slide 6

Jumping To/From Procedures

• When we jump to a procedure, must remember where we came from so we

can return. Do this with “jump and link”

jal label

which puts address of next instruction in register $ra and jumps to label.

(How do we know address of next instruction? “Program counter” (special

register) has address of current instruction.)

• We can then get back with “jump to register”

jr r1

which jumps to address in register r1.

CSCI 2321 February 18, 2014

Slide 7

Register Saving and Local Variables

• Actually running the called procedure is straightforward, right?

• Yes, except we need some way to save/restore registers — so we don’t mess

up caller (by convention, “temporary” registers might change, but most others

don’t).

• We also need a way to make space for local variables.

Slide 8

Register Saving and Local Variables, Continued

• Common solution — use part of memory as a stack (familiar ADT, right?), for

saving registers and other local storage. Makes recursive procedures easier.

• By convention, stack starts at high address and “grows” to lower addresses,

and register $sp (“stack pointer”) points to top.

• How to push / pop?

• Since $sp can change during computation, can use register $fp (“frame

pointer”) to point to start of area (“procedure frame”) for saved registers, local

variables.

CSCI 2321 February 18, 2014

Slide 9

Other Variables

• Last but not least, we (may?) need someplace to store variables that can be

preallocated (static/global) and variables that are dynamically allocated (e.g.,

with malloc in C).

• By convention, we put them right after the program code and use register

$gp (“global pointer”) to point to them. Typically call the memory used for

dynamically-allocated variables “the heap”.

Slide 10

Procedure Calls, Revisited

• Calling procedure must:

– Put parameters in $a0 through $a3 (if more than four, on stack).

– Determine address of called procedure and jump there, saving address of

next instruction.

– Get return value from $v0 (and $v1, if used).

• Called procedure must:

– Save registers as needed, including return address.

– Retrieve parameters and do calculation.

– Put results in $v0 and $v1.

– Restore saved registers.

– Return to caller.

CSCI 2321 February 18, 2014

Slide 11

Example

• How to compile the following?

int main() {

a = 5; b = 6; c = 7;

x = addproc(a, b, c);

return 0;

}

int addproc(int a, int b, int c) {

int x;

x = a + b + c;

return x;

}

(Sample program call-addproc.s.)

Slide 12

Data Formats, Revisited

• Recall, inside the computer “it’s all ones and zeros” — so we must encode

anything we want to represent.

• Integers — binary numbers, often 32 bits for MIPS, but could be other sizes

too. Several choices for signed numbers; two’s complement is the most

common.

• Real numbers — floating-point format, later.

• Text — ASCII (8 bits per character) or Unicode (16 bits). Strings represented

with explicit length field (Java) or terminating character (C).

• Many, many more complex formats (.doc, MP3, GIF, etc.).

CSCI 2321 February 18, 2014

Slide 13

More Load/Store Instructions

• MIPS architecture defines lw and sw for loading/storing data in 32-bit

chunks; also defines lb (“load byte”) and sb (“store byte”) for loading/storing

data in 8-bit chunks, plus instructions to load/store data in 16-bit chunks.

All must align on appropriate boundaries.

Slide 14

Working with Constants, Revisited

• Recall addi instruction. Exists because often we need to use a small

constant in a program.

• Uses same format (“I format”) as lw and sw, which allows 16 bits for

constant.

• What if we need more than 16 bits? “Load upper immediate” instruction:

lui register, constant

Puts (16-bit) constant in “upper” 16 bits of register. Follow with addi (or,

better, ori) to load a full 32-bit constant.

CSCI 2321 February 18, 2014

Slide 15

Addressing Modes

• We’ve been unspecific about how to specify addresses of a lot of things.

• So, now look at various “addressing modes” — ways to specify where to find

an operand.

• Which is used? Defined by instruction format (R, I, J).

Slide 16

Addressing Modes, Continued

• Register addressing: Value is in one of the general-purpose registers.

Assembler defines symbolic names for them (e.g., $t0).

• Immediate addressing: Value is in instruction itself.

• Base-displacement addressing: Value is in memory, with address calculated

by adding a displacement to what’s in a register. Example is memory-address

operand of lw, sw.

• PC-relative addressing (more shortly).

• Pseudo-direct addressing (more shortly).

CSCI 2321 February 18, 2014

Slide 17

PC-Relative Addressing

• Address is formed by adding offset in instruction (16 bits) and contents of the

program counter (special register).

(Actually, address is offset times 4, plus the updated program counter.)

• Example is conditional branches (beq, bne).

• Does this limit what we can do with beq and bne? If so, how often will it

matter? What could we do to work around it?

Slide 18

Pseudo-Direct Addressing

• Address is formed by combining address in instruction (26 bits) and upper bits

of program counter.

(Actually, address is address in instruction times 4, or’d with upper bits of

program counter.)

• Example is unconditional branch (j).

• Does this limit what we can do with j? If so, will that be a problem? Can we

work around it?

CSCI 2321 February 18, 2014

Slide 19

Minute Essay

• Would you object to rescheduling the midterm for after spring break? say the

Thursday after (3/20)?

• What does the following code do? i.e., what is in registers $s0 and $s1

after it executes?

add $s0, $zero, $zero

addi $s1, $zero, 1

addi $s2, $zero, 4

l1:

addi $s0, $s0, 1

add $s1, $s1, $s1

bne $s0, $s2, l1

Slide 20

Minute Essay Answer

• We could trace through the code, which sets values in three registers and

then executes a loop:

$s0 is initially set to 0 and then takes on values 1, 2, 3, and 4

$s1 is initially set to 1 and then takes on values 2, 4, 8, and 16

$s2 is initially set to 4 and doesn’t change

