
CSCI 2321 February 20, 2014

Slide 1

Administrivia

• Reminder: Quiz 1 Tuesday. “Open book, open notes”:

You can use any computing facilities you need to access the textbook and the

course Web site, but no other use of computing.

Topics from chapter 1.

• No one objected to moving the midterm, and several people said after the

break was better, so March 20 it is.

• (Homework 2 still under construction. Soon!)

Slide 2

Minute Essay From Last Lecture

• Answer in notes — now anyway.

• Many people came fairly close. Review tracing through code?

• Off-topic for this slide but interesting: An attempt to Google up an answer to

the question “why two registers for procedure return values?” found a Stack

Overflow post saying it was so one could return 64-bit values. Sounds

plausible to me!



CSCI 2321 February 20, 2014

Slide 3

A Little (More) About Assembly Language and
Assemblers

• We’ve done some short examples of translating assembly language into

machine language, punting on labels. (But now that we know about

addressing modes, we can fill in details — next.)

• Normally this is done programmatically, by an “assembler”. Accepts symbolic

representations of instructions. Also uses some directives to help keep track

of instructions, define character strings, etc. Details for MIPS assembler in

Appendix B.

Slide 4

Translating Instructions With Labels — Example

• Look at an example — machine language for this C:

while (a[i] == k) {

i = i + j;

}

Assume we’re using $s3 through $s6 for i, j, k, address of a, and that

code is in memory at (decimal) location 80000.

What does the machine code look like? first a digression . . .



CSCI 2321 February 20, 2014

Slide 5

Writing Complete Programs for the Simulator

• The simulator includes what’s in essence a very primitive operating system,

with facilities to load programs and do simple I/O. As in real operating

systems, I/O is done by making “system calls”.

• Complete programs can be run from the command line with, e.g., spim

-file hello.s.

Slide 6

System Calls

• System calls are how user programs request service from the operating

system — not just in MIPS, but in general. In MIPS the instruction is

syscall; other architectures have something analogous.

• System calls similar to procedure calls in some ways — need to communicate

to o/s which service you want (e.g., write some text to “standard output”) and

possibly parameters (e.g., the text to write). As with procedure calls, we do

this by putting values in particular registers, but then rather than jal we use

syscall.



CSCI 2321 February 20, 2014

Slide 7

System Calls, Continued

• An important distinction (discussed more in o/s courses): Code for “system

call” executes as part of the o/s, which means not subject to same restrictions

as user programs (e.g., on memory access).

• Details (e.g., what services are offered) depend on the o/s. The very primitive

o/s included in spim supports some for simple I/O; details in Appendix ?.

Slide 8

Complete Programs — Examples

• We can now write some simple but complete programs for the simulator.

• (Examples on “sample programs” page.)



CSCI 2321 February 20, 2014

Slide 9

Example Revisited

• Now we have enough that we can translate that fragment of C into assembler

and test the result(!).

• (Start by rewriting to use goto, then translate into assembler, then . . . )

Slide 10

Minute Essay

• None — sign in.


