
CSCI 2321 February 25, 2014

Slide 1

Administrivia

• FYI: Quiz solutions will be online after class(es).

Slide 2

Example, Continued

• Finish example (of turning one of those snippets of C code into a complete

MIPS assembly program) from previous class.

• Look at binary version of instructions, especially branches and jumps.



CSCI 2321 February 25, 2014

Slide 3

Decoding Machine Language

• As a check on whether what we have is sensible — try going from machine

language back to assembly language, using same example.

• Notice that there are limits to how reversible this process is. (What?)

Slide 4

Sidebar: Parallel Execution and Synchronization

• A lot of commodity hardware these days features multiple processing units

(“cores”) sharing access to memory. One reason for this is that in theory we

can make individual applications faster by splitting computation up among

processing elements.

• Having processing elements share memory makes parallel programming

easier in some ways but has risks (“race conditions”). Avoiding the risks

requires some way to control access to shared variables (e.g., to implement

notion of “lock”).



CSCI 2321 February 25, 2014

Slide 5

Parallel Execution and Synchronization, Continued

• Most texts on operating systems discuss synchronization issues and present

several solutions (“synchronization mechanisms”), some rather high-level and

others not.

(Why is this in o/s textbooks?)

• The most primitive can (with some simplifying assumptions) be implemented

with no hardware support. But hardware support is very useful.

Slide 6

Instructions for Synchronization

• Key goal in designing hardware support for synchronization is to provide

“atomic” (indivisible) load-and-store. This allows writing a low-level

implementation of “lock” idea.

• Many architectures do this with a single instruction (e.g., “test and set” or

“compare and swap”). Requires two accesses to memory so may be difficult

to implement efficiently.

• MIPS approach — same idea, but using a pair of instructions, ll (“load

linked”) and sc (“store conditional”). Example of use in textbook (p. 122). sc

“succeeds” only if value at target location has not changed since previous ll

— i.e., if one can regard the pair of instructions as forming a single atomic

load/store.



CSCI 2321 February 25, 2014

Slide 7

Minute Essay

• None — quiz.


