
CSCI 2321 March 4, 2014

Slide 1

Administrivia

• Reminder: Quiz 2 Thursday. Topics from chapter 2. Likely kinds of questions

are “what does this code do?” and “translate this C into MIPS assembler”.

• Reminder: Homework 2 due Thursday. Late penalty waived if you can turn it

in by class time Tuesday.

Slide 2

Linking — Example

• (Work through example starting on p. 127. Notice that we also need

information about locations of “text segment” and “data segment”.)

CSCI 2321 March 4, 2014

Slide 3

Representing Data, Revisited

• To the hardware “it’s all ones and zeros”. But those ones and zeros can

encode numbers (various forms), text, etc.

• Numbers in particular are interesting because we want to implement

arithmetic operations.

• In theory you learned about integer representation and arithmetic in

CSCI 1320. Review . . .

Slide 4

Binary Versus Decimal (Review?)

• In decimal (base 10) notation, each digit is multiplied by a power of 10. Same

idea for binary (base 2), but using powers of 2.

• So, converting from binary to decimal is easy (if tedious), working from

definition. Example?

CSCI 2321 March 4, 2014

Slide 5

Binary Versus Decimal, Continued

• Converting from decimal to binary? Repeatedly divide by 2 and record

remainders . . .

We could describe this as a recursive algorithm for computing bits(n):

– Base case is n < 2; trivial.

– For recursive step, divide n by 2 to get quotient q and remainder r. Then

n = 2q + r, and:

The last bit of bits(n) should be r.

The remaining bits are bits(q), left-shifted by 1.

Slide 6

Binary Versus Decimal, Continued

• Terminology: “Least significant” and “most significant” bits.

• Seems like there would be one obvious way to store the multiple bytes of one

of these in memory, but no — “big endian” versus “little endian” (names based

on Gulliver’s Travels).

CSCI 2321 March 4, 2014

Slide 7

Binary Versus Decimal, Continued

• Binary is useful for showing real internal state but not very compact. Decimal

is compact but not so easy to convert to/from binary.

• We might notice — easy to convert to/from a base that’s a power of 2. Hence

the use of “octal” (base 8) and “hexadecimal” (base 16). For the latter, we

need more than 10 digits, so we use “A” through “F”.

Examples?

• Notice that we can also convert directly to/from decimal, much as we did for

binary.

Slide 8

Representing Integers (Review?)

• Representing non-negative integers is easy — convert to binary and pad on

the left with zeros.

• What about negative integers?

• Could try using one bit for sign, but then you have +0 and -0, and there are

other complications.

• Or . . . consider a car odometer — in effect, representable numbers form a

circle, since adding 1 to largest number yields 0.

CSCI 2321 March 4, 2014

Slide 9

Representing Integers, Continued

• We could implement the car-odometer idea in binary, and then choose where

to “cut the circle” (between smallest and largest):

– Between 0 and all ones — unsigned integers.

– Between largest number with 0 as the MSB and smallest number with 1 as

MSB — “two’s complement” signed integers.

• Notice that with the two’s complement scheme, +1/-1 moves us “around the

circle” — nothing special needed for negative numbers.

• Notice that if we have n bits, adding 2n to x gives us x again. This leads to

an easy way to compute −x: Compute 2n
− x, and notice that

2n
− x = (2n

− 1) − x + 1

which is very easy to compute . . .

Examples?

Slide 10

Signed Versus Unsigned

• If we have n bits, we can use them to represent signed values in — what

range?

Or we can use them to represent non-negative values only (“unsigned

values”) — then what range?

• Many MIPS instructions have “unsigned” counterparts — addu, addiu,

sltu, etc.

• Example: Suppose we have

0x00000000 in $t0

0xfffffff2 in $t1

What happens if we execute slt $t2, $t0, $t1?

What happens if we execute sltu $t2, $t0, $t1?

(Same bits, different interpretations!)

CSCI 2321 March 4, 2014

Slide 11

Sign Extension

• If we have a number in 16-bit two’s complement notation (e.g., the constant in

an I-format instruction), do we know how to “extend” it into a 32-bit number?

For non-negative numbers, easy.

For negative numbers, also not too hard — consider taking absolute value,

extending it, then taking negative again.

• In effect — “extend” by duplicating sign bit.

• (Notice that not all instructions that include a 16-bit constant do this.)

Slide 12

Two’s Complement and Addition/Subtraction

• Addition in binary works much like addition in decimal (taking into account the

different bases). Notice what happens if one number is negative. (Try an

example or two.)

• Subtraction could also be done the way we do in decimal. Or how else could

we do it? (Again, try some examples.)

• But there is one catch, related to the fact that operands and result are all n

bits. What is it?

CSCI 2321 March 4, 2014

Slide 13

Addition/Subtraction and Overflow

• If adding two n-bit numbers, result can be too big to fit in n bits — “overflow”.

• For unsigned numbers, how could we tell this had happened?

• How about for signed numbers?

Slide 14

Addition/Subtraction and Overflow, Continued

• Notice that we can’t get overflow unless input operands have the same sign.

• If we add two positive numbers and get overflow, how can we tell this has

happened? Does this always work?

• If we add two negative numbers and get overflow, how can we tell this has

happened? Does this always work?

CSCI 2321 March 4, 2014

Slide 15

Addition/Subtraction and Overflow, Continued

• When we detect overflow, what do we do about it?

• From a HLL standpoint, we could ignore it, crash the program, set a flag, etc.

• To support various HLL choices, MIPS architecture includes two kinds of

addition instructions:

– Unsigned addition just ignores overflow.

– Signed addition detects overflow and “generates an exception” (interrupt)

— hardware branches to a fixed address (“exception handler”), usually

containing operating system code to take appropriate action.

This is why, if you look at MIPS assembler for C programs, the arithmetic is

unsigned — C ignores overflow, so why bother to look for it.

Slide 16

Minute Essay

• Was everything today (about numbers/arithmetic) reasonably clear / covered

in CS1?

