
CSCI 2321 March 6, 2014

Slide 1

Administrivia

• Quiz 3 Tuesday. More questions from chapter 2, possibly including material

about binary representation of instructions. (Why another quiz so soon?

Might help you prepare for midterm.)

• Review sheet for midterm on the Web soon.

• Reminder: Homework 2 officially due today; accepted Tuesday without

penalty.

Slide 2

Minute Essay From Last Lecture

• The review(?) of arithmetic in/and different bases was review for most people.

If not for you, and you’re still confused after a try at reading up, ask.

CSCI 2321 March 6, 2014

Slide 3

Implementing Arithmetic — Preview

• In the next chapter we start talking about hardware design (though still at a

somewhat abstract level).

• For now it may be useful to know that the low-level building blocks are entities

that can evaluate Boolean expressions — very simple ones at the lowest

level, and slightly more complex ones one level up.

• So for example we can implement addition by first making a “one-bit adder”

that maps three inputs (two operands and carry-in) to two outputs (result and

carry-out), and then chaining together 32 of them.

• (Multiplication and division may need to be more complex, involving multiple

steps and control-flow logic.)

Slide 4

More Arithmetic — Multiplication

• As with addition, first think through how we do this “by hand” in base 10.

(Review terminology: In a × b, call a the “multiplicand” and b the “multiplier”.)

Example?

• We can do the same thing in base 2, but it’s simpler, no? computing the

partial results is easier. This gives the textbook’s first algorithm, figure 3.5.

(Work through example if time permits.)

Notice also that overflow could be a lot worse here — so normally we’ll

compute a result twice as big as the inputs.

(We can do better — later.)

• What about signs? Algorithm works, if we extend the sign bit when we shift

right.

CSCI 2321 March 6, 2014

Slide 5

Multiplication, Continued

• In MIPS architecture, 64-bit product / work area is kept two special-purpose

registers (lo and hi). Two instructions needed to do a multiplication and get

the result:

mult rs1, rs2

mflo rdest

Assembler provides a “pseudoinstruction”:

mul rdest, rs1, rs2

• Notice, however, that a “smart” compiler might turn some multiplications into

shifts. (Which ones?)

Slide 6

Division

• As with other arithmetic, first think through how we do this “by hand” in

base 10. (Review terminology: We divide “dividend” a by “divisor” b to

produce quotient q and remainder r, where a = bq + r and 0 ≤ |r| < b.)

Example?

We can do the same thing in base 2; this gives the algorithm in figure 3.10.

(Work through example if time permits.)

(Here too we can do better — later).

• What about signs? Simplest solution is (they say!) to perform division on

non-negative numbers and then fix up signs of the result if need be.

CSCI 2321 March 6, 2014

Slide 7

Division, Continued

• In MIPS architecture, 64-bit work area for quotient and remainder is kept in

same two special-purpose registers used for multiplication (lo and hi).

After division, quotient is in lo and remainder is in hi. Two (or more)

instructions needed to do a division and get the result:

div rs1, rs2

mflo rq

mfhi rr

Assembler provides a “pseudoinstruction”:

div rdest, rs1, rs2

• Notice, however, that a “smart” compiler might turn some divisions into shifts.

(Which ones?)

Slide 8

Integer Multiplication and Division, Recap

• Algorithms for both operations are based on how you do things “by hand”,

with some modifications to permit simpler hardware. It’s not critical to

understand the details, but probably useful to work through an example to

believe that it works.

• Required hardware is something that can add two 32-bit numbers, a 64-bit

“work area”, something to do right and left shifts of the 64-bit area, and some

control logic.

• MIPS architecture uses “special registers” lo and hi for the 64-bit work

area. This is where the results end up. There are instructions to multiply, to

divide, and to move from the special registers. (“Move from” explains the

names of the instructions.)

CSCI 2321 March 6, 2014

Slide 9

Representing Real (Non-Integer) Numbers

• Approach is based on a binary version of “scientific notation”:

In base 10, we can write numbers in the form +/ − x .yyyy × 10z .

E.g., 428 = 4.28 × 102, or −.0012 = −1.2 × 10−3.

• We can do the same thing in base 2. Examples:

32 = 1.02 × 25

−3 = −1.12 × 21

1/2 = 1.02 × 2−1

3/8 = 1.12 × 2−2

• This is “floating point” (as opposed to “fixed point”, which would allow for

non-integers but wouldn’t allow as much flexibility — wide range, all with

reasonable precision).

Slide 10

Representing Real Numbers, Continued

• In base 10, we can completely specify a number by giving its sign, a number

in the range 0 ≤ x < 10 (the “significand” or “mantissa”), and the exponent

for 10. Same idea applies in base 2.

• So, most/all “floating-point formats” have a bit for the sign, some bits for the

significand, and some bits for the exponent. Different choices are possible,

even with the same total number of bits; (at least) one architecture (VAX)

even supported more than one format with the same number of bits(!).

• With integers, number of bits limits the range of numbers that can be

represented. With “floating-point” numbers, two limiting factors — number of

bits for the significand (which limits what?), and number of bits for the

exponent (which limits what?).

(Does this suggest why the VAX designers offered two formats?)

(To be continued . . .)

CSCI 2321 March 6, 2014

Slide 11

Minute Essay

• None — quiz.

