CSCT 2321 March 18, 2014

Administrivia

o Reminder: Midterm Thursday. Review sheet on the Web.
o Reminder: Homework 2 due today.

o Homework 1 solution will be available in hardcopy outside my office by end of

today. Homework 2 solution tomorrow.

Slide 1
Representing Real (Non-Integer) Numbers, Review
e Representation based on binary version of scientific notation.
e So we need to store a sign, significant digits (“significand”), and an exponent.
Slide 2

CSCT 2321 March 18, 2014

Representing Real Numbers, Continued

e “|[EEE 754 standard” defines formats and operations.

e Exponent is actually stored “biased” — actual exponent plus bias (so we only

have to store non-negative exponents — simplifies comparisons).
e Significand doesn't include leading 1. (Why not?)

Slide 3 e But then how to represent 0? Agree that exponent of all Os will represent O if
significand is 0O, else “de-normalized number”.

e Also, agree that exponent of all 1s will represent +/- “infinity” if significand is 0,
else NaN (“not a number” — result of indeterminate or invalid operations such
as 0/0).

e “Single-precision” format has 8 bits for exponent, biased by 127, 23 bits for
significand. (Double precision is 8, 1023, 52 respectively.)

e Work through an example ...

Floating-Point Addition

o How to add two floating-point numbers? Approach is similar to how you'd do
this with decimal numbers in scientific notation:
1. Shift number with smaller exponent to right until exponents match.
2. Add fractions.

Slide 4 3. Normalize (get significand back in proper range).
4. Check for overflow (exponent too big) or underflow (exponent too small).
5. Round, and renormalize if necessary.

o Examples in textbook (worth looking through but not necessary to master
details).

CSCT 2321 March 18, 2014

Floating-Point Multiplication

e How to multiply two floating-point numbers? Approach is also similar to how

you'd do this with decimal numbers in scientific notation:

1. Add exponents and subtract bias.

2. Multiply fractions.
Slide 5 3. Normalize (get significand back in proper range).

4. Check for overflow (exponent too big) or underflow (exponent too small).

5. Round, and renormalize if necessary.

6. Set sign bit.

. J
Floating-Point Arithmetic Can Be Strange, Part 1
e Consider the following loop:
for (f =0.0; f !'=1.0; f +=0.1)
printf("f = 9%\n", f);

What do you think it does?

Slide 6 Why?

CSCT 2321

Slide 7

Slide 8

March 18, 2014

_

Floating-Point Arithmetic Can Be Strange, Part 2

e Consider the following code:

doubl e fsmall = 1le-10;

doubl e fbig = 1el0;

doubl e tenpl = fbig;

for (int i = 0; i < 10000; ++i)
tenpl += fsmall;

doubl e temp2 = 0.0;

for (int i =0; i < 10000; ++i)
tenp2 += fsmall;

tenp2 += fbig;

Afteritruns, ist enpl equal to t enp2?

(This has implications for parallel computing, as described in section 3.6.)

J

Floating Point in MIPS Architecture

e Architecture defines 32 floating-point registers ($f O through $f 31), used
singly for single-precision, in pairs for double-precision.
e Instruction set includes:
— Arithmetic instructions:
add. s,sub.s,nmul . s,div. s;add. d,sub. d,mul . d,div.d
— Load/store instructions (single-precision):
lwel;swel
— Comparisons:
c.eq.s,c.lt.s,etc;c.eq.d,c.lt.d,etc
These set a bit true/false, which can be used by bc 1t , bc1f .

CSCT 2321 March 18, 2014

4)

Review for Midterm

e (One more example MIPS program — factorial, as an example of a recursive
function.)

e (Questions as time permits.)

Slide 9

e None — quiz.

Slide 10

