
CSCI 2321 April 8, 2014

Slide 1

Administrivia

• Reminder: Homework 3 due today (5pm).

• Quiz 4 was scheduled for Thursday. Postpone until a week from today.

• Homework 4 will be on the Web early tomorrow; to be due in a week.

Slide 2

Minute Essay From Last Lecture

• Intent of question was perhaps not clear — point was to compare an ALU that

works on 64 bits at a time (so, 64-bit registers) and one that works on 32 bits

at a time.

• (Review “answer” slide.)



CSCI 2321 April 8, 2014

Slide 3

Review/Recap — Sketch of MIPS Processor

• Objective is to sketch something that can execute representative subset of

MIPS instructions.

• Simplest building blocks are “gates” that implement basic Boolean operations.

• Design in terms of “combinational logic blocks” (no saved state) and

“sequential logic blocks” (saved state).

Slide 4

Finite State Machines

• Typically represent sequential logic blocks as “finite state machines”,

consisting of

– Input(s).

– Output(s).

– Current state (one of a set of possible states).

• Define FSM by Boolean expressions that map

– Current state and input(s) to next state.

– Current state and (optionally) input(s) to output(s).

• Appendix B example — controlling a traffic light. (Figures B.10.1 through

B.10.3 and surrounding text.)



CSCI 2321 April 8, 2014

Slide 5

Implementing the MIPS Architecture

• Goal of chapter 4 is to show how we could use the low-level building blocks

described in Appendix B to implement a proof-of-concept subset of the

architecture (instructions, registers, etc.) we’ve defined.

• “Proof of concept”? yes, the subset we’ll implement may not be enough to do

anything useful or interesting, but it should be enough to illustrate how we

could implement the rest of the architecture.

Slide 6

Subset to Implement

• Representative memory-access instructions (lw, sw).

• Representative arithmetic/logical instructions (add, sub, and, or, slt).

• Representative control-flow instructions (beq, j).



CSCI 2321 April 8, 2014

Slide 7

Overview

• Very simplified view of what a processor does: Fetch next instruction. Figure

out what it is and execute it. Lather, rinse, repeat.

Implicit in this description is a notion of “next instruction”, which normally

moves through the stored program in sequence but not always (e.g., for

control-flow instructions).

• What we have to work with: Two kinds of “logic blocks” described in

Appendix B.

Slide 8

Clocking — Executive-Level Summary

• (Discussed in more detail in Appendix B.)

• Hardware will include something that implements a “clock cycle”.

• State elements’ inputs are “sampled” during one phase of this cycle, and

outputs can change during another phase.

• Length of cycle determines how complicated the various logic blocks can be

(or vice versa).



CSCI 2321 April 8, 2014

Slide 9

Some Components We Want

• A register file.

• Some memory (which for simplicity we’ll separate into instruction memory and

data memory).

• Some way of representing where to find the “next” instruction — a “special

purpose” register typically called “program counter” (PC).

• One or more ALUs (why more than one? should become obvious soon).

• “Control logic”. (More soon.)

• Figures 4.1 and 4.2 sketch overall plan. How does Figure 4.2 relate to what

we need to do . . .

Slide 10

Fetching Instructions and Updating PC

• For all instructions, start by getting instruction from memory. (What do we

need? How does this map to Figure 4.2?)

• For most instructions, at some point we need to increment PC. (What do we

need? How does this map to the figure?)

• And then the three groups of instructions do different things, but there are

some commonalities . . .



CSCI 2321 April 8, 2014

Slide 11

Memory-Access Instructions

• Instruction includes two registers (one for memory address, one for data) and

a 16-bit displacement.

• Needed computation:

– Add displacement to register containing address.

– Use result to access memory, loading/storing to/from register containing

data.

• How does this map to Figure 4.2?

Slide 12

Arithmetic/Logic Instructions

• Instruction includes three registers (two for input operands, one for result).

• Needed computation:

– Perform operation (with ALU) using values from two registers as inputs.

– Save result in target register.

• How does this map to Figure 4.2?



CSCI 2321 April 8, 2014

Slide 13

Control-Flow Instructions (beq)

• (j later.)

• Instruction includes two registers (data to compare) and a 16-bit displacement

used to find target of branch.

• Needed computation:

– Compare contents of two registers.

– Compute address of branch target (PC plus displacement).

– Use result of comparison to choose value for next PC.

• How does this map to Figure 4.2?

Slide 14

Overview Revisited

• Notice that Figure 4.2 seems to have ways to do everything we need to do —

paths for data to flow from one place to another, including into ALU(s) for

computation.

• Notice also that for every instruction we’re in some sense doing the same

things (have each ALU compute something), but some results are essentially

discarded. (Example — beq computes two “next instruction” addresses, but

only saves one of them.) This is very typical of how things work at this level.



CSCI 2321 April 8, 2014

Slide 15

The “Datapath”

• As discussed in class (and in more detail in section 4.2), we will need

instruction memory, data memory, register file, PC, a full ALU, and a couple of

adders.

• Did we leave anything out? yes:

– Input to ALU / adder is two 32-bit quantities, but for some instructions what

we have in the instruction is 16 bits — so we need something to extend

that to 32 bits by extending the sign.

– Both control-flow instructions include something that needs to be shifted

two bits before being used to compute a target address, so we need to

support that.

• Combine with “datapath” part of Figure 4.2 to get Figure 4.11, which leaves

out the “control” part, substituting not-connected-yet control inputs (blue in the

text).

Slide 16

Control Logic

• So we have a “datapath” that can do things, but there are some inputs that

aren’t connected to anything. An analogy — the datapath is a puppet, and

these inputs are its strings.

• Who/what pulls the strings? the “control logic” — combinational logic whose

input is the current instruction plus any other needed information and whose

output is those disconnected inputs to datapath.

• As mentioned in Appendix B, tools exist to transform truth tables into

combinational logic, so our job is to come up with ones that will generate the

signals we need for the datapath.

• Section 4.4 works through details. A lot of it should seem like common sense

(viewed from the right angle?).



CSCI 2321 April 8, 2014

Slide 17

Minute Essay

• The design sketched so far has two separate memory blocks, one for

instructions and one for data. This turns out to be needed for the simplest

implementation, one in which each instruction executes in a single cycle.

Why? is there something different about the types of values to be stored, or is

there some other reason?

Slide 18

Minute Essay Answer

• This is one of the textbook’s “check yourself” questions (p. 259), and the

answer is at the end of the chapter.


